Krzysztof Duzinkiewicz

URZĄD KOMUNIKACJI ELEKTRONICZNEJ, Delegatura w Zielonej Górze, ul. Dąbrowskiego 41b, 65-021 Zielona Góra

Pozanormatywne metody pomiarów zaburzeń przewodzonych EMC

mgr Krzysztof Duzinkiewicz

Absolwent Wydziału Matematyki, Informatyki i Ekonometrii Uniwersytetu Zielonogórskiego. Pracownik Urzędu Komunikacji Elektronicznej Delegatury w Zielonej Górze, pełniący obowiązki Naczelnika Wydziału Kontroli Radiowej i Zwalczania Zakłóceń. Wieloletni pracownik Laboratorium Badań Technicznych, realizujący statutowe zadania Urzędu z zakresu Kontroli Rynku Wyrobów, prowadzący badania w obszarze kompatybilności elektromagnetycznej.

e-mail: k.duzinkiewicz@uke.gov.pl

Streszczenie

W artykule przedstawiono pozanormatywne metody pomiarów zaburzeń przewodzonych EMC na przykładzie zasilacza impulsowego AC/DC. Wykonano analizę porównawczą znormalizowanych pomiarów kompatybilności elektromagnetycznej zaburzeń przewodzonych wykonywanych specjalizowanym odbiornikiem pomiarowym EMC z badaniami pozanormatywnymi wykonanymi w dziedzinie czasu za pomocą oscyloskopu cyfrowego. Do obliczeń numerycznych i wizualizacji wyników pomiarów wykorzystano pakiet Wolfram Mathematica 8. Przeprowadzona analiza wykazała porównywalne wyniki pomiarów obu metod.

Słowa kluczowe: pomiary w dziedzinie czasu i częstotliwości, EMC, zaburzenia przewodzone, transformata Fouriera, okno czasowe.

Non-normative methods of measurement interference conducted in EMC

Abstract

This article presents non-normative methods of measurement interference conducted in EMC on the example of impulsive power supply AC/DC. Analysis has been carried out in order to compare normalized measurements interference conducted, performed by the use of special EMI test receiver with non-normative research, performed on time domain by means of digital oscilloscope. Numerical calculations and visualization of measurement results was made with Wolfram Mathematic 8 packet. The results of the analysis show that there are slight differences between those two methods.

Keywords: measurements in time and frequency domain, EMC, interferences conducted, Fourier transform, time window

1. Wprowadzenie

Dyrektywa EMC [1] [2] oraz normy zharmonizowane z dyrektywą ściśle określają konfigurację stanowiska pomiarowego, parametry sprzętu pomiarowego oraz sposób prowadzenia samych pomiarów i interpretacji wyników. Pomiar zaburzeń przewodzonych wykonywany jest w kabinie ekranowanej za pomocą sztucznej sieci o stałej impedancji 50Ω i mierzony jest za pomocą specjalizowanego odbiornika pomiarowego EMC. Otrzymane wyniki pomiarów przedstawione są w dziedzinie częstotliwości.

Przeprowadzone pozanormatywne badania eksperymentalne wykonane są również za pomocą sztucznej sieci w kabinie ekranowanej. Same pomiary wykonane są natomiast w dziedzinie czasu za pomocą oscyloskopu cyfrowego. Stosując transformatę Fouriera (DFT) pomiar przekształcany jest do postaci widma częstotliwości sygnału.

Badania pozanormatywne i zgodne z normą przedmiotową dla typu badanej grupy urządzeń [3] (PN-EN 55014) wykonane zostały dla tego samego zasilacza impulsowego AC/DC.

2. Pomiary w dziedzinie czasu

Konfiguracja stanowiska dla pomiarów w dziedzinie czasu przedstawia rysunek 1. Zasilacz impulsowy przyłączony jest do sieci energetycznej przez sieć sztuczną (LISN). W badaniach wykorzystano jednofazową sieć typu V firmy Rohde&Schwarz ENV216 [4] oraz oscyloskop cyfrowy firmy ATTEN ADS1000.

Rys. 1. Stanowisko pomiarowe badań zaburzeń przewodzonych w dziedzinie czasu Fig. 1. Test measurement of conducted interferences in time domain

Wyjście sygnału RF sztucznej sieci połączone jest bezpośrednio z kanałem oscyloskopu za pomocą kabla koncentrycznego.

Dane pomiarowe z oscyloskopu są przesyłane do komputera za pomocą interfejsu USB i bezpośrednio zapisywane w formacie plikowym ".csv". Następnie wyniki pomiarowe są przetwarzane przez skrypt w środowisku Mathematica i przedstawiane graficzne w postaci diagramów oscylacyjnych odzwierciedlających pomiar na ekranie oscyloskopu.

Badania przeprowadzono na przekształtniku AC/DC opartym na powszechnie stosowanym w zasilaczach impulsowych małej mocy kluczu TNY266 [5] (z rodziny TinySwitch II). Częstotliwość pracy elementu przełączającego - szybkie czasy przełączania (zbocza narastające) są główną przyczyną powstawania zaburzeń.

Przebiegi czasowe mierzone oscyloskopem cyfrowym za pomocą sondy napięciowej (z linowym pasmem pomiarowym do 60MHz) na tranzystorze kluczującym oraz sygnał na wyjściu RF sieci sztucznej zmierzony bezpośrednio są co do kształtu porównywalne, co wskazuje na główne źródło emisji zaburzeń przewodzonych propagujących w kierunku sieci zasilającej.

3. Analiza w dziedzinie częstotliwości

Badany przebieg czasowy (rys. 2) po przesłaniu do komputera został poddany za pomocą transformaty Fouriera, przekształceniu do postaci widma częstotliwości sygnału.

1

Rys. 4. Widmo częstotliwościowe sygnału zmierzone odbiornikiem EMC oraz uzyskane analitycznie Fig. 4. Signal frequency spectrum measured with EMI test receiver as well as signal frequency spectrum gained analytically

Ponieważ otrzymany sygnał wyjściowy dostajemy z oscyloskopu cyfrowego w postaci skończonej liczby punktów, gdzie odpowiednim wartością napięcia odpowiadają kolejne wartości czasowe, to naturalnym było zastosowanie dyskretnej transformacji Fouriera (DFT) na zbiorze liczb rzeczywistych.

Najlepsze odwzorowanie, najbardziej zbliżone w stosunku do pomiarów odbiornikiem zaburzeń EMC ma zastosowanie dyskretna transformacja cosinusowa (ang. *discrete cosine transform*), a właściwie zmodyfikowana wersja (1) wzoru podstawowego - wersja II (DCT-II).

$$X_{k} = \sum_{n=0}^{N-1} x_{n} cos \left[\frac{\pi}{N} \left(n + \frac{1}{2} \right) k \right], \quad k = 0, \dots, N-1$$
(1)

Ponieważ norma przedmiotowa dla typu badanej grupy urządzeń, w naszym przypadku przekształtników AC/DC, ściśle określa pasmo pomiarowe - charakterystyka widma częstotliwości sygnału została ograniczona (obcięta) do pasma od 150kHz do 30 MHz (CISPR B) [6], pasma zaburzeń przewodzonych. Natomiast poziom sygnału został przeskalowany do skali decybelowej (3).

$$U_{dB} = 20\log(U) \tag{3}$$

Uzyskana charakterystyka otrzymana analitycznie musi pokrywać się z wynikami pomiarowymi uzyskanymi za pomocą odbiornika pomiarowego EMC.

4. Widmo sygnału rzeczywistego ograniczonego oknem czasowym

Stosując metodę okien czasowych, operację splotu sygnału analizowanego z sygnałem okna w osi czasu – zmienia się amplituda sygnału w funkcji okna, tłumione są niepożądane składowe, będące efektem przecieku.

Dalej stosując transformatę Fouriera [8] do badanego sygnału rzeczywistego ograniczonego oknem (rys. 3), zmierzonego z wyjścia RF sieci sztucznej za pomocą oscyloskopu cyfrowego, otrzymujemy widmo sygnału przedstawionego na rysunku 4. Oczywiście skala częstotliwości wydma została obcięte do zakresu pasma CISPR B.

Rys. 3. Sygnał w dziedzinie czasu przeskalowany oknem gaussowskim Fig. 3. Signal in time domain scaled with Gaussian window

Analizę na sygnale rzeczywistym przeprowadzono dobierając eksperymentalnie kształt okna czasowego dla kilku różnych funkcji, okien czasowych: trójkątnego, Holmana, Blackmana oraz Gaussa. Najlepsze przybliżenie porównane do pomiarów wykonanych odbiornikiem EMC uzyskano stosując okno czasowe typu Gaussa. Kształt widm sygnałów w obu metodach pomiarowych jest porównywalny (Rys. 4).

5. Podsumowanie

Metody pomiaru zaburzeń przewodzonych przy użyciu odbiornika pomiarowego są jednymi z podstawowych badań określonych przez dokumenty normalizacyjne. Zaproponowana metoda pomiarowa zaburzeń przewodzonych z wykorzystaniem oscyloskopu cyfrowego oraz zastosowany aparat matematyczny do przekształceń sygnału do postać widma częstotliwościowego pokazuje, że pozanormatywne podejście pomiarowe doprowadza do porównywalnych wyników. Oczywiście stosując w pomiarach zaburzeń specjalizowany odbiornik pomiarowy EMC dysponujemy stanowiskiem pomiarowym, w którym pomiary dokonujemy automatycznie, uzyskujemy wprost widmo częstotliwościowe zaburzeń.

Nieznaczne różnice pomiędzy widmem sygnału uzyskanego wprost przy pomiarze odbiornikiem EMC a widmem uzyskanym analitycznie wynikają głównie z szerokości pasma pomiarowego oscyloskopu cyfrowego oraz pasma sondy pomiarowej. Badania eksperymentalne pokazały, że pasmo pomiarowe sondy i oscyloskopu cyfrowego powinno być przynajmniej dwukrotnie większe od zakresu badań zaburzeń przewodzonych – w tym wypadku na co najmniej 60MHz oraz charakterystyka samej sondy pomiarowej powinna być liniowa w całym zakresie.

6. Literatura

- [1] Dyrektywa Kompatybilność elektromagnetyczna. 2004/108/WE.
- [2] Ustawa z dnia 13 kwietnia 2007 r. o kompatybilności elektromagnetycznej (Dz. U. z 2007 r. Nr 82, poz. 556).
- [3] PN-EN 55014-1: 2004, Kompatybilność elektromagnetyczna. Wymagania dotyczące przyrządów powszechnego użytku, narzędzi elektrycznych i podobnych urządzeń. Część 1: Emisja.
- [4] Rohde & Schwarz GmbH: EMI test receiver 9kHz to 2750MHz ESCS 30. Operating manual, 1998.
- [5] http://www.powerint.com
- [6] PN-CISPR 16-1: 1997, Kompatybilność elektromagnetyczna (EMC) Wymagania dotyczące urządzeń i metod pomiarów zaburzeń radioelektrycznych i odporności na zaburzenia radioelektryczne. Urządzenia do pomiarów zaburzeń radioelektrycznych odporności na zaburzenia radioelektryczne
- [7] Sroka J.: Niepewność pomiarowa w badaniach EMC. Pomiary emisyjności radioelektrycznej. Oficyna Wydawnicza Politechniki Warszawskiej, 2009.
- [8] Szabatin J.: Podstawy teorii sygnałów. WKiŁ, 2007.