KNWS’13

Tomasz GIDLEWICZ, Arkadiusz BUKOWIEC

UNIVERSITY OF ZIELONA GORA, Faculty of Electrical Engineering, Computer Science and Telecommunications,
Institute of Computer Engineering and Electronics, ul. Podgérna 50, 65-246 Zielona Goéra

Implementation of algorithm of Petri net architectural synthesis into FPGA

Tomasz GIDLEWICZ, B.Sc.

Tomasz Gidlewicz obtained B.Sc. degree (2013) from University of Zielona Gora with
specialization engineering of microcomputers systems. Now, he is a master student at
the same University.

e-mail: tgidlewicz@gmail.com

Arkadiusz BUKOWIEC, Ph.D.

Arkadiusz Bukowiec obtained B.Sc. degree (2001) from Technical University of
Zielona Géra and M.Sc. degree (2004) with a specialization in computer engineering
at University of Zielona Goéra. In 2008 he defended his Ph.D. thesis with distinction at
Faculty of Electrical Engineering, Computer Science and Telecommunications of
University of Zielona Goéra in the field of computer science. Since 2004, he works at
Institute of Computer Science and Electronics at University of Zielona Gora, as an
assistant professor.

e-mail: a.bukowiec@iie.uz.zgora.pl

Abstract

In the paper an implementation of algorithm of Petri net array-based
synthesis is presented. The method is based on decomposition of colored
interpreted Petri net into subnets. The structured encoding of places in
subnets is done of using minimal numbers of bits. Microoperations, which
are assigned to places, are written into distributed and flexible memories.
It leads to realization of a logic circuit in a two-level concurrent structure,
where the combinational circuit of the first level is responsible for firing
transitions, and the second level memories are used for generation of
microoperations. This algorithm is implemented in C# and delivered as
library.

Keywords: C#, decomposition, FGPA, logic synthesis, Petri net.

Implementacja algorytmu syntezy blokowej
sieci Petriego do uktadu FPGA

Streszczenie

W artykule przedstawiono implementacj¢ algorytmu syntezy sieci Petriego
z wykorzystaniem metod dekompozycji blokowej. Metoda opiera si¢ o
dekompozycje pokolorowanej sieci Petriego na podsieci automatowe.
Kodowanie miejsc w kazdej podsieci wykonane jest na minimalnej ilo$ci
bitéw. Mikrooperacje przypisane do miejsc zostaja umieszczone w pa-
migci wewngtrznej uktadu. Prowadzi to do realizacji uktadu logicznego w
dwu poziomowej strukturze, gdzie uklad pierwszego poziomu od-
powiedzialny jest za generowanie funkcji odpalania tranzycji a uktad
drugiego poziomu za generowanie mikrooperacji. Algorytm ten zostat
zaimplementowany w jezyku C# i dostarczony jako niezalezna biblioteka.

Stowa Kkluczowe: C#, dekompozycja, FGPA, synteza logiczna, sie¢
Petriego

1. Introduction

Application specific logic controllers (ASLC) [1] are one of the
most popular group of electronic devices. They can be designed as
dedicated software for microcontroller or as dedicated hardware.
The second approach gives more possibilities of system integra-
tion as system on programmable chip (SoPC) with use of field
programmable gate arrays (FPGAs). The most classical way of
designed such controllers is application of hardware description
languages (HDLs) but it is unconformable for designer and poten-
tially it gives high risk of human mistake. The usage of graphical
representation of algorithm is much more conformable [2]. In this
case Petri nets (PNs) [3] are one of the most adequate methods for
formal design of such devices. It gives easy way for representation
of concurrent processes and additionally there could be applied
mathematical algorithms for formal analysis and verification of

the designed model [4]. There are also several algorithms of direct
synthesis of Petri net model into FPGA devices [5, 6]. The most
typical implementation of Petri nets into FPGA devices use one-
hot local state encoding where each single place is represented by
a flip-flop [6]. Such an approach requires hardware implementa-
tion of a large number of several logic functions and flip-flops
included in macrocells.

One of the main features of FPGA is an existence of separated
logic elements (look-up tables) with restricted fixed number of
inputs.

Very frequently logic functions have more arguments than
number of inputs of such logic element. It forces a functional
decomposition during a synthesis process and consumes a large
number of logic elements. One of the methods of decreasing a
number of such functions is architectural decomposition of a
sequential circuit [7]. Such methods introduce several additional
internal variables and very often consume more hardware than
typical direct implementation. This issue can be resolved by using
logic elements together with embedded memory blocks that are
available in modern FPGA devices.

There is presented implementation of a synthesis algorithm [7]
that allow to decrease the number of implemented logic functions
depending on inputs and internal variables of Petri net-based logic
controller. The logic functions are going to be synthesized with
use of logic elements and embedded memory blocks. To permit
the minimal local state encoding the Petri net is initially colored
and it is compacted into macro Petri net [8]. Macroplaces that are
colored by the same color create one state machine module. Each
memory block controls only microoperations that belong to the
subnet with the same color.

2. Colored interpreted macronet

An interpreted Petri net [6,7, 8] is an extension of a simple Petri
net [3] about a feature for information exchange. This exchange is
made by use of binary signals. It is required for a models of con-
current logic controllers [1, 6] to establish communication with
environment.

Now, a transition can be fired if all its input places are marked
and a condition assigned to this transition returns value true. Like
in simple Petri nets, firing of a transition removes tokens from its
input places and puts one token in each output place. The condi-
tion is defined as Boolean function of the input variables.

Elementary conjunctions of affirmation of some output vari-
ables are associated to places. If the place is marked the output
variables from corresponding conjunction are being set otherwise
they are being reset.

An interpreted Petri net can be extended with a hierarchy by
application of macroplaces [4]. A macroplace correspond to a part
of a net. In this article we make frequent use of mono-active
macroplaces, that are limited to have one input and one output and
consist of only sequential places.

A Petri net can be enhanced by assigning colors to places and
transitions [3, 8]. In state machine (SM) colored Petri net colors
help to validate intuitively and formally the consistency of all
sequential processes covering the considered Petri net. Each color
recognizes one SM-subnet.

3. Synthesis algorithm overview

The idea of synthesis method is based on the minimal local
states encoding of places together with functional parallel decom-
position of the Petri net-based logic circuit. Places are encoded

separately in every colored subset. Output variables assigned to
places are placed in configured memories of FPGA. It leads to
realization of a logic circuit in two-level structure (Fig. 1), where
the combinational circuits of first level are responsible for genera-
tion of the excitation functions. The memory of the circuit is built
from concurrent D-type registers which hold a current state of
each subnet. The second level decoders are responsible for genera-
tion of microoperations and they are implemented using memory
blocks.

X 1 1 1 1
cc' 2 RG' 951G v X

cc? 2 Ra? 1SS v2 |7,

\ A

A 4

[Yv [Vv

> cc' 2 RG |51 v LS

3

Rys. 1. Uklad logiczny sterownika logicznego
Fig. 1. Logic circuit of ASLC

A 4

The synthesis process includes following steps:
1. Formation of subnets,
2. Encoding of places,
3. Formation of conjunctions and logic equations,
4. Formation of memory contents,
5. Formation of logic circuit and implementation.

4. Implementation of synthesis algorithm

The algorithm was implemented in C# in Microsoft .NET envi-
ronment. The whole algorithm was implemented with use of three
classes (Fig. 2).

GenHDLCODE
+GenHDLCODE(_net:PetriNet,_subnets:List<PetriNet>,
_PetriNetName:string)
+GenHDLCODE(_net:PetriNet,_subnets:List<PetriNet>)
+GenerateCode():bool
+GetCCList{):List<string>
+GetRGList():List<string>
+GetYList():List<string>
+GetFinalFile():string

GenerateHDL
+GenerateHDL(_p:PetriNet,PetriNetName:string)
+VHDLCODEGenerate():void
+ifGenerated():bool
+GetCCList():List<string>
+GetRGList(): List<string>
+GetYList():List<string>

+GetFinalFile():string — Decompone
+GetSubnets():List<PetriNet> +Decompone(net:PetriNet)
+SaveToDir(desc:string):bool +D)-List<PetriNet>

Rys. 2. Diagram klas algorytmu syntezy
Fig. 2. Class diagram of synthesis algorithm

The class Decompone is responsible for decomposition of
macronet into concurrent macrosubnets. Then each macrosubnet is
extracted into flat subnet.

The other steps of synthesis algorithm are performed by meth-
ods from other two classes. All equations are generated directly
into VHDL syntax. It allows easy and fast further generation of
description of hole circuit in VHDL.

The whole algorithm was compiled into Decompone-
AndVHDLCodeGen.dll library. There are public only methods for
generation VHDL code. Other methods, which perform particular
steps of synthesis algorithm, are internal and not available for end-
user. They are invoked automatically by main method.

The designed library was used for implementation sample ap-
plication PetriNetToVHDL. The application reads Petri net in
PNML format extended with nodes for interpretation. Such de-

KNWS’13

scription can be obtained from graphical editors for Petri nets.
After reading the synthesis can be performed and the result can be
saved in chosen director or displayed on the screen (Fig. 3).

[weapal | [Genens | [Zapisz | [Wyswietlkod VHDL | [Wyswietlpodsiect | [Zamkni

Ukiady CC ~

library |EEE;

use |[EEE.STD_LOGIC_1164.al;

entity cc1_PetriNetTest1is

port(

XF1:in STD_LOGIC;

XF3:in STO_LOGIC:

XM2 :in STD_LOGIC:

XF4:in STD_LOGIC:

Q :in STD_LOGIC_VECTOR(E downto O):
D :out STD_LOGIC_VECTOR{2 downto O)

)3
end ccl_PetriNet Test1:

architecture cc1_arch of co1_PetriMetTest1is

signal p : STD_LOGIC_VECTOR(1ta 11);

signal DMP : STD_LOGIC_VECTOR(1to 2);

signalt : STD_LOGIC_WECTOR(1 to 9);

signal Hp : STD_LOGIC_VECTOR(1 to 11}; <z

Rys. 3. Gléwne okno aplikacji do syntezy
Fig. 3. Main window of synthesis application

5. Summary

The implementation of the method of synthesis of application
specific logic controllers into FPGAs with embedded memory
blocks was presented in this article. The special method of logic
synthesis [7] is applied. The usage of designed library is fully
automated and it could be easily integrated with design tools in
CAD system.

The research was financed from budget resources intended for
science in 2010-2013 as an own research project No. N N516
513939.

6. References

[1] M. Wegrzyn, P. Wolanski, M. Adamski, J. Monteiro, “Coloured Petri
net model of application specific logic controller programs”,
w: Proceedins of IEEE International Symposium on Industrial Elec-
tronics — ISIE’97, vol. 1. Guimaraes, Portugalia: Piscataway, 1997,
ss. 158-163.

[2] G. Labiak, “From UML statecharts to FPGA — the HiCoS approach”,
w: Proceedings of the Forum on Specification & Design Languages —
FDL’03. Frankfurt, Niemcy: ECSL, 2003, ss. 354-363.

[3] T. Murata, “Petri nets: Properties, analysis and applications”, Proceed-
ings of the IEEE, vol. 77, no. 4, ss. 541-580, 1989.

[4] J. Esparza, M. Silva, “On the analysis and synthesis of free choice
systems”, w: Advances in Petri Nets 1990, ser. Lecture Notes in Com-
puter Science, G. Rozenberg, Ed. Berlin/Heidelberg: Springer-Verlag,
1991, vol. 483, ss. 243-286.

[5] L. Gomes, A. Costa, J. Barros, P. Lima, “From Petri net models to
VHDL implementation of digital controllers”, w: 33rd Annual Con-
ference of the IEEE Industrial Electronics Society — IECON’07. Tai-
pei, Taiwan: IEEE, 2007, ss. 94-99.

[6] M. Adamski, M. Wegrzyn, “Petri nets mapping into reconfigurable
logic controllers,” Electronics and Telecommunications Quarterly,
vol. 55, no. 2, ss. 157-182, 2009.

[7]1 A. Bukowiec, M. Adamski, “Synthesis of Macro Petri Nets into FPGA
with Distributed Memories”, International Journal of Electronics and
Telecommunications, vol. 58, no. 4, ss. 403-410, 2012.

[8] M. Adamski, J. Tkacz, “Formal reasoning in logic design of recon-
figurable controllers”, w: Proceedings of 11th IFAC/IEEE
International Conference on Programmable Devices and Embedded
Systems — PDeS’12, Brno, Czechy, 2012, ss. 1-6.

