
THE METHODS FOR TRANSFORMATION OF PARALLEL AND SEQUENT
AUTOMATA INTO VHDL-DESCRIPTIONS

Pyotr Bibilo

United Institute of Informatics Problems, National Academy of Sciences of Belarus
Surganov str., 6. 220012 Minsk, Belarus

e-mail: bibilo@newman.bas-net.by

SUMMARY

The developed methods for transformation of parallel and sequent automata allow one to obtain

VHDL descriptions in the synthesized subset of the language that LeonardoSpectrum

synthesizer works with.

1. INTRODUCTION

To describe the behavior of digital systems a number of languages (models) are developed.

One of such models is the parallel automaton [1]. The advantage of this model is convenience

of the initial description of behavior of a digital system and simplicity of its circuit

implementation in the form of programmable logical array (PLA) with the memory as a RS-

flip-flop register. The model of sequent automaton is intermediate one when a parallel

automaton described in PRALU language is implemented in a circuit. The PRALU language

is intended to describe parallel algorithms of logical control. The logical “orderliness”,

simplicity, compactness of descriptions, binary (Boolean) variables using as input and output

ones of the control device whose algorithm is given in the language are characteristic features

of PRALU language. The whole description of PRALU language is in [1]. VHDL is an

international standard in CAD systems and intended for specification, simulation and

synthesis of digital systems based on very large-scale integrated (VLSI) circuits that are

custom made and programmable by the user [2]. The transition from the models of parallel

and sequent automata to VHDL models is of practical interest. In this paper, methods for

transforming symbolic PRALU descriptions of parallel automata and matrix descriptions of

sequent automata into algorithmic synthesized VHDL descriptions for LeonardoSpectrum

synthesizer [2] are suggested. This synthesizer allows one to synthesize circuits implemented

both in programmable logic circuits of FPGA (Field-Programmable Gate Arrays) or CPLD

(Complex Programmable Logic Devices) kind and as parts of custom made VLSI circuits.

39

II Konferencja Naukowa KNWS'05

"Informatyka- sztuka czy rzemios o"

15-18 czerwca 2005, Z otniki Luba skie

VHDL description is synthesized if automatic construction of logic circuits in given

technological bases is possible.

2. PARALLEL AUTOMATON

Using in the practice of designing digital systems the languages and formal models allowing

one to describe parallelism and asynchronous working of logical control is widening. One of

such models is model of parallel automaton. In [1] PRALU language is used to describe the

functioning of a parallel automaton. We take PRALU description of parallel automaton

consisting of elementary chains as the initial one. According to [1] we call elementary a chain

of the following form:

μi : -ki′ →ki" →νi , (1)

where operation -ki′ or →ki" or both may be absent. In general case, an elementary chain

consists of four parts:

μi is the set of the initial marks of the chain;

-ki′ is the operation of waiting of event ki′;
→ki" is the act operation;

νi is the set of the final marks of the chain.

The colon in formula (1) is a spacer, and the arrow before νi is the symbol of the operation of

inserting elements to the current chain start set. Set M called chain start set is obtained by

union of sets of initial and final marks of all chains. First, we explain what are the wait and act

operations. Then, we explain how an algorithm is executed as a whole, i.e. how chains are

executed, how they interact, and what is their place in set M.

In formula (1), ki′ and ki" are elementary conjunctions of Boolean variables. Conjunctions ki′
are constituted of letters of Boolean variables from set X, and conjunctions ki" are constituted

of letters of Boolean variables from set Y. If conjunction ki′ (ki") is absent in (1), it is supposed

to be equal to 1 identically. Operation -ki′ is a wait operation that waits for event ki′, that

means waiting for the event when the variables in conjunction ki′ take values that reduce ki′ to

1. Act operation →ki" means assigning the values to the variables of conjunction ki" that

reduce it to 1.

The chain (1) starts if set μi is in the current start set and wait operation -ki′ is fulfilled. The

starting of the chain consists of immediate removal of set μi from the current start set that is

followed by fulfilling the act operation →ki". Then, the elements of set νi are added to the

current start set immediately. At the beginning of the algorithm execution, the mark 1 is

introduced into the current start set. The algorithm execution ends when the start set contain

the final mark. When the algorithm is executing some chains can be fulfilled simultaneously
40

(in parallel), therefore such a formalism allows one to describe parallel logical control

algorithms. A set of elementary chains is shown in [1] to be a parallel automaton. At that, a

set of such chains must satisfy certain requirements, e.g. chains i and j that have the same set

of initial marks must have orthogonal conjunctions in the wait operations. Other requirements

to correctness of initial PRALU descriptions are in [1]. Assume the initial PRALU description

to be correct.

Let us consider the problem of transforming PRALU descriptions into VHDL codes. It is

natural that first, if necessary, one must change the identifiers of PRALU language according

to the requirements of VHDL. Then, the transformation of PRALU descriptions into VHDL

codes can be automated completely. Now we show how can it be done. Let us consider the

example of PRALU description from [3] where X = { 21 , xx }, Y = { 21, yy }:

1: →→− 2121 yyxx 10

10: →− 2x 2.3.4
3.5: →− 2x 8

4: →→− 11 yx 7

4: →→− 21 yx 9

7: →− 2x 9
6.8.9: →→ 2y 11

11: →− 1x 1

2: →→ 1y 5.6

We suggest to represent VHDL description of a parallel automaton (Listing 1) as two

interacting processes (operator process). The first process (process p1) defines in the

current time step ti the elementary chains that work in parallel and defines the next (for the

next time step ti + 1 of the discrete time) values of variables yj and the values of variables of the

chain start set. The prepared values of the act variables are denoted as jyn _ and the prepared

values of the variables of the start set as izn _ . Every chain is assumed to be fulfilled during

one time step of discrete time (if it can do it).

The second process (process p2) changes a time step by the front of the synchronization

signal, CLK. To do it operator if (CLK='1' and CLK'event) THEN of finding the front

CLK. The automaton is set to the initial state (the act variables are equal to 0 and the start set

has only variable z1) by value 1 of signal rst of permission that has the higher priority in

comparison with other input signals. At the moment of changing the time step, the signal

values that correspond to the wait variables must be established. If no elementary chain starts

in the current time step, the chain start set does not change for the next time step.

Listing 1. VHDL model of parallel automaton, PA.

41

LIBRARY work;
USE work.wire.all;
entity PA is
port (clk, rst, x1, x2 : in bit;
 y1, y2 : inout RESOLVED_BIT);
end;
ARCHITECTURE BEHAVIOR OF PA IS
signal z1, z2, z3, z4, z5, z6, z7, z8, z9, z10, z11 : RESOLVED_BIT;
signal n_z1, n_z2, n_z3, n_z4, n_z5, n_z6,
 n_z7, n_z8, n_z9, n_z10, n_z11 : RESOLVED_BIT;
signal n_y1, n_y2 : RESOLVED_BIT;
begin
p1 : PROCESS (z1, z2, z3, z4, z5, z6, z7, z8, z9, z10,z11, x1, x2)
begin
 n_z1 <= z1; n_z2 <= z2; n_z3 <= z3;
 n_z4 <= z4; n_z5 <= z5; n_z6 <= z6; n_z7 <= z7;
 n_z8 <= z8; n_z9 <= z9; n_z10 <= z10; n_z11 <= z11;
 n_y1 <= '0'; n_y2 <= '0';
if ((z1 and not x1 and x2)= '1') then -- line 1
n_z1<= '0';n_y1<= '1'; n_y2<= '0'; n_z10 <= '1';
end if;
if ((z10 and not x2) = '1') then -- line 2
n_z10 <= '0'; n_z2 <= '1'; n_z3 <= '1'; n_z4 <= '1';
end if;
if ((z3 and z5 and x2) = '1') then -- line 3
n_z3 <= '0'; n_z5 <= '0'; n_z8 <= '1';
end if;
if ((z4 and not x1) = '1') then -- line 4
n_z4 <= '0'; n_y1 <= '0'; n_z7 <= '1';
end if;
if ((z4 and x1) = '1') then -- line 5
n_z4 <= '0'; n_y2 <= '1'; n_z9 <= '1';
end if;
if ((z7 and not x2)= '1') then -- line 6
n_z7 <= '0'; n_z9 <= '1';
end if;
if ((z6 and z8 and z9) = '1') then -- line 7
n_z6 <= '0'; n_z8 <= '0'; n_z9 <= '0'; n_y2 <= '0'; n_z11 <= '1';
end if;
if ((z11 and x1) = '1') then -- line 8
n_z11 <= '0'; n_z1 <= '1';
end if;
if (z2 = '1') then -- line 9
n_z2 <= '0' ; n_y1 <= '0'; n_z5 <= '1'; n_z6 <= '1';
end if;
END PROCESS p1;
p2: PROCESS (CLK, rst)

BEGIN
if (rst = '1') then
y1 <= '0'; y2 <= '0'; -- initial state
z1 <= '1'; z2 <= '0'; z3 <= '0';
z4 <= '0'; z5 <= '0'; z6 <= '0'; z7 <= '0';
z8 <= '0'; z9 <= '0'; z10 <= '0'; z11 <= '0';

elsif (rst ='0') then
if (CLK='1' AND CLK'event) then

if (n_z1 or z2 or n_z3 or n_z4 or n_z5 or n_z6

42

or n_z7 or n_z8 or n_z9 or n_z10 or n_z11) = '0'
then null;

else
 y1 <= n_y1; y2 <= n_y2;
 z1 <= n_z1; z2 <= n_z2; z3 <= n_z3; z4 <= n_z4; z5 <= n_z5;z6 <= n_z6;
 z7 <= n_z7; z8 <= n_z8; z9 <= n_z9; z10 <= n_z10; z11 <= n_z11;

end if;
end if;

end if;
END PROCESS p2; END BEHAVIOR;

The commentaries in Listing 1 begin with two hyphens and continue up to the end of a line.

As the output signals (and inner ones) of automaton PA are assigned from different sources,

type resolved_bit is introduced that is defined by the corresponding resolution function

that is placed in package wire (Listing 2). As the values of signals y1 and y2 transmitted in

the architecture body (process p1) to inner signals n_y1, n_y2, the mode inout is used for

signals y1 and y2.

Listing 2. Package wire with resolution function RES_FUNC.
package wire is
function RES_FUNC(DATA: in bit_vector) return bit;
subtype RESOLVED_BIT is RES_FUNC bit;
end;
package body wire is

function RES_FUNC(DATA: in bit_vector) return bit is
begin

for I in DATA'range loop
if DATA(I) = '1' then

return '1';
end if;

end loop;
return '0';
end;

end;

3. SEQUENT AUTOMATON

The sequent automaton is a model of a digital system functioning in discrete time and consist

of set S of sequents si. Every sequent si is in form if ├ ik where fi is Boolean function of

input and inner variables, ki is an elementary conjunction of inner and output variables. Every

sequent fi |- ki describes a certain requirement to the behavior of the digital system: if fi takes

value 1 at some moment, ki takes 1 as well directly after it (at the next time step of discrete

time). At that, the values of all variables of ki are defined unambiguously.

Let us consider the simple sequent automaton obtained from a parallel automaton by the

programs of the system from [4]. It is given by nine sequents:

1021 zzxx ├ 2140 yyzz ,

43

4102 zzzx ├ 21 zz ,

2102 zzzx ├ 2z ,

411 zzx ├ 143 yzz ,

411 zzx ├ 243 yzz .

4312 zzzx ├ 3z ,

43210 zzzzz ├ 210 yzz ,

4101 zzzx ├ 0z ,

10 zz ├ 220 yzz ,

Variables x1 and x2 are input ones, z0, z1, z2, z3, z4 inner and y1, y2 output for the considered

automaton. The sequent automaton is simple one as the functions fi are represented by

elementary conjunctions of input and output variables. We interpret the given sequent system

as inertial sequent automaton and admit the following [5]: if the symbol of some inner

variable is absent in all elementary conjunctions ki corresponding to functions fi that are equal

to 1 at a current moment, then this variable is considered to keep its value; if the symbol of

some output variable is absent, the variable is equal to 0. In CAD systems, a sequent

automaton is given by a pair of ternary matrices with the same number of rows. One of the

matrices gives the left parts of the sequents and the other matrix the right parts.

A method is suggested to transform a simple inertial automaton given by a pair of ternary

matrices into a VHDL description represented in data flow style. Two interconnected

processes (operator process) are used in the suggested VHDL model of sequent

automaton. One of the processes analyzes input and inner variables of the sequents at the

current time step ti, selects the starting sequents and forms the next values of inner and output

variables for the next time step ti + 1 of discrete time. The other process sets the prepared next

values as the current values at time step ti + 1. The time steps change at the front of the

synchronization signal that as well as the signal setting the automaton into initial state is

present implicitly both in the model of parallel automaton and in the model of sequent

automaton.

Listing 3. VHDL model of sequent automaton, SEKV.
LIBRARY work;
USE work.wire.all;
ENTITY SEKV IS

PORT (CLK, rst, x1, x2 : in bit;
 y1, y2 : out RESOLVED_BIT);
END;
ARCHITECTURE BEHAVIOR OF SEKV IS
SIGNAL z0, z1, z2, z3, z4: RESOLVED_BIT := '1';
SIGNAL n_z0, n_z1, n_z2, n_z3, n_z4 : RESOLVED_BIT;
SIGNAL n_y1, n_y2 : resolved_bit ;
BEGIN
p1: PROCESS (x1, x2, z0, z1, z2, z3, z4)

44

BEGIN
n_z0 <= z0; n_z1 <= z1; n_z2 <= z2; n_z3 <= z3; n_z4 <= z4;
n_y1 <= '0'; n_y2 <= '0';
if (not x1 and x2 and z0 and z1) = '1' then -- line 1
n_z0 <= '0'; n_z4 <= '0'; n_y1 <= '1'; n_y2 <= '0';
end if;
if (not x2 and not z0 and z1 and not z4)='1' then -- line 2
n_z1 <= '0';n_z2 <= '0';
end if;
if (x2 and z0 and not z1 and not z2) ='1' then -- line 3
n_z2 <= '1';
end if;
if (not x1 and not z1 and not z4) = '1' then -- line 4
n_z3 <= '0'; n_z4 <= '1'; n_y1 <= '0';
end if;
if (x1 and not z1 and not z4)='1' then -- line 5
n_z3 <= '1'; n_z4 <= '1'; n_y2 <= '1';
end if;
if (not x2 and not z1 and not z3 and z4) = '1' then -- line 6
n_z3 <= '1';
end if;
if (z0 and not z1 and z2 and z3 and z4) = '1' then -- line 7
n_z0 <= '0'; n_z1 <= '1'; n_y2 <= '0';
end if;
if (x1 and not z0 and z1 and z4) = '1' then -- line 8
n_z0 <= '1';
end if;
if (not z0 and not z1) = '1' then -- line 9
n_z0 <= '1'; n_z2 <= '0'; n_y1 <= '0';
end if;
END PROCESS p1;
p2: PROCESS (CLK, rst)
 BEGIN
if (rst = '1') then
y1 <= '0'; y2 <= '0'; -- initial state
z0 <= '1'; z1 <= '1'; z2 <= '1'; z3 <= '1'; z4 <= '1';

elsif (rst ='0') then
if (CLK='1' AND CLK'event) THEN

 y1 <= n_y1; y2 <= n_y2;
 z0 <= n_z0; z1 <= n_z1; z2 <= n_z2; z3 <= n_z3; z4 <= n_z4;

end if;
end if;
END PROCESS p2;
END BEHAVIOR;

In VHDL model of sequent automaton, SEKV, as in VHDL model of parallel automaton, PA,

the same operator finding the front of the synchronization signal, CLK, is used. The

automaton is set to the initial set (the values of all input and output variables are equal to 0)

by value 1 of signal rst of permission that has the higher priority in comparison with other

input signals. During the current time step, the input signals may change (it does not cause the

change of output signals at the current time step) but the input signals must be set at the

moment of changing a time step.

45

Using the VHDL models of parallel and sequent automata, logic circuits in the basis of the

logic elements [2, page 159] from library of VLSI design based on the base matrix crystals

have been constructed by LeonardoSpectrum synthesizer. According to the technique

described in [5] a logic circuit of PLA with memory elements as RS-flip-flops has been

constructed that implements the considered sequent automaton. The model of the given circuit

is described in VHDL. The simulation showed the equivalence of the temporal behavior of all

models, i.e. initial algorithmic models of parallel and sequent automata and three structure

models of logic circuits.

4. CONCLUSION

The suggested methods for transformation of PRALU descriptions of parallel and sequent

automata are easily implemented in computer programs and intended to create the integrated

design environment LeonardoSpectrum-LOCON [4]. The author acknowledges Yu.V.

Pottosin for useful discussions on this work.

The research is supported by International Scientific and Technology Center (Project B-986).

REFERENCES

[1] А. D. Zakrevskij: Parallel Algorithms for Logical Control, Institute of Engineering

Cybernetics of NAC of Belarus, Мinsk 1999, 202 p. (in Russian)

[2] P. N. Bibilo: Synthesis of Logical Circuits Using VHDL, Solon-R, Moscow, 2002, 384 p.

(in Russian)

[3] A. V. Kovalyov, Yu. V. Pottosin: On decomposition of parallel logical control

algorithms. Avtomatgika i vychislitelnaya tekhnika, 1988, № 1, pp. 8–13

[4] V. I. Romanov: Algorithmic design in LOCON system, Logical design, Issue 5, Institute

of Engineering Cybernetics of NAC of Belarus, Мinsk, 2000, pp.137-146 (in Russian)

[5] А. D. Zakrevskij: Logical Synthesis of Cascade Networks, Nauka, Moscow, 1981, 416 p.

(in Russian)

46

