20

Andrei KARATKEVICH

PAK 6bis/2006

UNIWERSYTET ZIELONOGORSKI, INSTYTUT INFORMATYKI | ELEKTRONIKI

Analysis of Parallel Discrete Systems: Persistent Sets

and Concurrent Simulation

Ph.D. Andrei KARATKEVICH

Received the Ph.D. degree from Belarusian State
University of Informatics and Radioelectronics in
1998. Since 2000 he is an assistant professor at
Technical University of Zielona Goéra (since 2001 -
University of Zielona Goéra). His current research
interests include Petri net theory and its applications,
especially to problems related to analysis and
verification of parallel or distributed control systems.

e-mail: A.Karatkevich@jiie.uz.zgora.pl

Abstract

This paper is focused on problem of analysis of parallel discrete systems,
which can be described by Petri nets. The general analysis approach
considered in the paper is optimal simulation, allowing checking properties
of the system by constructing reduced state spaces. Two well-known
methods of such analysis are based on persistent sets and concurrent
simulation, correspondingly. Here we discuss possibility of combination
between those methods and describe an algorithm using both ideas.
Combination with decomposition approach is also discussed.

Keywords: parallel discrete systems, Petri nets, simulation, state exploration.

Analiza wspétbieznych systeméw
dyskretnych: uparte zbiory
i symulacja wspotbiezna

Streszczenie

Tematem pracy jest problem analizy wspotbieznych systemow
dyskretnych, ktore moga byé opisane sieciami Petriego. Ogoélnym
podejsciem do analizy, omawianym w artykule, jest symulacja optymalna,
ktora pozwala sprawdza¢ wlasciwosci sieci poprzez konstruowanie
zredukowanej przestrzeni osiagalnosci. Dwie znane metody takiej analizy
bazuja na tak zwanych ,upartych zbiorach” oraz na wspolbieznej
symulacji. W pracy przedstawiono wykorzystanie tych idei w ramach
jednej metody. Oméwione sa tez mozliwosci i zalety polaczenia takiej
metody z wykorzystaniem dekompozycji.

Stowa kluczowe: wspotbiezne systemy dyskretne, sieci Petriego,
symulacja, eksploracja stanow.

1. Introduction

The basic model of digital device, used in theory of automata and
practice of digital design, is Finite State Machine. However, very
often design of discrete systems, in particular control systems,
requires generalization of automata description allowing parallelism.
There are two main ways of parallel automata description; one is
based on FSM networks, another — on Petri nets.

Petri nets [8] are a formal model describing parallel asynchronous
discrete systems. Petri nets are used in modeling and design of
digital devices, especially logic controllers. There exist several
languages for specification of control algorithms, based on Petri nets
formalism.

Analysis and verification of parallel systems such as Petri nets is
much more complex task, than analogous tasks for pure sequential
descriptions. It is caused by the fact that number of reachable global
states of a parallel system depends exponentially on its size (the
state explosion problem), so direct managing of such system’s state
space often turns to be practically impossible. On the other hand, for
the parallel systems there exist such analysis tasks which do not
exist for the sequential systems.

There are multiple methods and algorithms of analysis of parallel
systems. Some of them avoid state exploration at all; some others

reduce it, searching only a part of state space [3]. There are two
main approaches to reduced state space construction. One is based
on selecting at each step of simulation a subset of possible (active)
transitions to be simulated; it is generally known as persistent set
method [10], its most elaborate technique is stubborn set method [9].
Another one is based on the idea of concurrent simulation of active
transitions [4, 5]. Other known approaches are listed in [3].

Each of the mentioned approaches has remarkable advantages. Is
it possible, however, to combine those advantages within one
method? Direct combination of those two approaches seems to be
impossible, because the main ideas are almost opposite: generally, if
two non-conflicting transitions are simultaneously enabled, the first
way supposes that their firing will be simulated one-by-one, and the
second — simultaneously.

But the maximal concurrent simulation approach is not
sufficiently expressive [4, 5]; for example, it is easy to show, that,
being directly applied, it may fail to detect some deadlocks. So,
maybe the concurrent simulation approach can be improved by the
idea of persistent sets? We claim that the answer is positive. In [6]
a particular case of this possibility is presented; here we give
a generalization of the idea described there.

2. Petri nets

A Petri net [8] can be presented as a bipartite oriented graph with
two kinds of nodes: places and transitions. Places and transitions are
connected by arcs. A marking is an allocation of tokens which can
be assigned to places. Allocation and number of tokens in a net can
change by transition firing, which is regulated by simple rules [8]. In
modeling and design of discrete control systems the interpreted Petri
nets [1] are used, being a Petri-net-based models enhanced by the
elements making possible communication of the model with the
outer world (conditions and events). The important properties of
Petri nets are liveness and safeness [6]. A deadlock is a reachable
marking in which no transition can fire. Deadlock detection is one
of the theoretically and practically important tasks of analysis of
Petri nets. Detailed definitions and notations are not presented here
because of lack of space; see [4, 8, 10, 11].

In fig. 1 a Petri net is presented, being a part of specification of
a control algorithm [2].

pl

6, pll
16 223
p7, pi2,
17 2
P8, 110 pl3 s Y
8 3
P9 Y24 pl4
19 Y X24 4
P10 pIs,

Fig. 1. A Petri net
Rys. 1. Sie¢ Petriego

21

PAK 6bis/2006

3. Concurrent simulation and persistent sets

The next affirmations present a possibility of uniting of the
mentioned approaches.

Lemma 1. Let M be a global state, Mt M;t;M, ... t,M, be
a sequence in the reachability graph, 7 is a transition enabled in all
the states MM,...M,, and there is no such transition #; in the
sequence that 6,1, Nt # & Then the sequence f4,f,...1, is enabled
at M and leads to the same marking M as the sequence #;z,... f,1.

Proof. The effect of the firing of a transition at a marking is an
addition of an integer valued vector to this marking. Vector
addition is commutative, so if two sequences of transition firing
are enabled at the same state and differ only in order of the
transitions, the resulting marking is the same. So, it is enough to
prove that the sequence 17,7, ... t, is enabled at M.

The proof proceeds by induction on n. Let n=1. Suppose that ¢
disables #;. Then ¢ and ¢; share an input place p, which has 1 token
at M. But as far as #; does not disable ¢, p et;°, which contradicts
the assumption %"t # <. So, t and t; do not disable each
other, and for n=1 the lemma holds.

Now, assume that the lemma holds for every sequence of length
(n-1)>0, and let us prove that it holds for a sequence of length n.
According to the inductive hypothesis, sequence #7;t,...7,; is
enabled at M. It leads to the same state M’ as #,¢,...t,.;¢. Firing of ¢
at M,,_; does not disable #,, which follows from the same proof as
at the first step of induction. Hence the sequence Mt t,...t, itM’”’
exists. From the above also the sequence Mz t,...t, ;1tM " 't,M’
exists, so the lemma holds for #. This together with the inductive
hypothesis proves the lemma.

Theorem 1. Let PN = (P,T,F,M,) be a Petri net, let U = (Tp,,
Tps, ... Tp,) be a set of non-intersecting persistent sets at M,.
Simulate at M, every step 4, = {t,*, £, ..., t,5} such that ¢} Tp,
Repeat the operation for every newly obtained marking. Every
deadlock reachable from M, in PN will be reached by such search.

Proof. Let D be a reachable deadlock. From Theorem 4 in [10],
there is a sequence M, tt,...t,, D in the reduced reachability graph
(RRG) created with the persistent set approach (also if at every
step Tpel). As far as no transition is enabled at D and no
transition outside a persistent set can disable a transition in the
persistent set, for every Tp;eU there is a transition #; belonging to
the sequence, such that all the previous transitions in the sequence
are independent in respect of it; all such transitions (belonging to
different persistent sets) are mutually independent. From Lemma
1, every such transition can be moved to the beginning of the
sequence, and the sequence will remain enabled and will lead to
the same marking. Then there exists (in the full reachability graph,
but also, as it is easy to show, in an RRG) a sequence
Myt ‘ty°...t,* M;oD being an interleaving of M, tt,...t,, D, such that
there is step 4;={t;°, t,°, ... t,*}, which will be simulated at M. So,
MyA ;M. If M; # D, repeat for the sequence M;cD the same
reasoning, as was applied above to M, t,t,...t,, D. |o}<m, hence D
will be reached in a finite number of steps.

4. Description of the proposed method

The proposed approach can be implemented in the next
algorithm, which constructs an RRG for given Petri net
PN=(P,T.F.M,).

Algorithm 1
1. Introduce the initial marking A, as a node and tag it
HneWH.
2. While "new" markings exist, do the following:
a. Select a new marking M. Q:=& R:=0,
i-=0. While enabled(M) \ (QLR) = &, do
the next.

i. i:=itl. Select t; € (enabled(M) |
(OLR)).
ii. Calculate Tg; such that t; € Ty If
Tsi N Q # & then R:=RAt;} and
i:=i-1; else Q:= QUTy;.
. Forj=1..i: Tp;:= Ts; N enabled(M).
c. Let 4 be the set of all steps 4; = {t,", .
£} such that § 1 € Tp,.
d. For every pair of transitions ¢, ¢’ such that
ted;, €A, and ¢t and ¢’ are independent at M:
Ay := Ay u{t’}
e. Forevery 4,e4 :
i. Obtain the marking M’ such that
MA M.
ii. Introduce M’ as a node, introduce
an arc with label 4, from M to M’,
and tag M’ "new".
f. Remove label "new" from M.

It follows from Theorem 1, that the reachability graph generated
by Algorithm 1 contains all the reachable deadlocks of the net.
Examples of applying Algorithm 1 to the Petri nets see in Fig. 2, 3.

Fig.2. Graphs of concurrent simulation of the biggest connected component of the
net shown in Fig. 3a, according to OPT (a) and Algorithm 1 (b)

Rys. 2. Grafy wspotbieznej symulacji najwigkszej spojnej komponenty sieci,
pokazanej na rys. 3a - wg. OPT (a) i algorytmu 1 (b)

Pl 2 3 pd
) ®

e f

p5 p8

c
p6 d 7
g
L p10 pl1

)

a)

b)

Fig.3. A Petri net (Fig. 1.2 from [4]) (a), graph of concurrent simulation according
to Algorithm (b) and graph of concurrent simulation OPT (c)

Rys. 3. Sie¢ Petriego (rys. 1.2 z [4]) (a), graf wspotbieznej symulacji wg. algorytmu
1 (b) i graf wspotbieznej symulacji OPT (c)

It is interesting to compare Algorithm 1 with the method of
concurrent simulation by R. Janicki i M. Koutny, which is
described by its authors as the optimal simulation (OPT) [4].

22

Examples of the graphs generated by OPT are shown in Fig. 2a,
3c. In some cases the graphs created with those methods are
identical (as in Fig. 4).

p3
23

)Z3

Fig. 4. A Petri net (Fig. 2.1 from [4]) and graph of concurrent simulation
Rys. 4. Sie¢ Petriego (rys. 2.1 z [4]) i graf wspotbieznej symulacji

There are the next essential differences between Algorithm 1
and OPT.

e Generally OPT generates shorter firing sequences, but
Algorithm 1 simulates less number of transition firings.

e OPT is defined only for the state machine decomposable (SMD)
nets [4], Algorithm 1 works for any ordinary Petri net.

e In general case in reachability graph generated by OPT there
may be different nodes for the same markings. Algorithm 1
follows the pattern of the algorithm of full reachability graph
generation [8], and it constructs the graph in which not more
than one node corresponds a marking.

5. Alternative branching, state explosion and
decomposition

Concurrent simulation cannot avoid state explosion in case of
nets with many alternative branchings, because such simulation
would require checking of all the mutual combinations of
alternative variants in all the parallel branches. Consider a net with
r parallel branches, each consisting of n alternative branches of
length ¢. Then complete reachability graph would consist of (ng)”
nodes, RRG with maximal concurrent simulation — of #"g nodes,
and RRG created by stubborn set method - of ngr nodes. That
means that comparative effectiveness of those methods does not
depend on the length of branches but does depend on the extent of
alternative branching.

But this problem seems to be in certain respect similar to the
problem of avoiding interleaving. Different ordering of
independent transitions firing leads to the same result, so why
consider all the mutual combinations? That is the background of
persistent set approach. On the other hand, sometimes the final
result (i.e. a deadlock) does not depend on the alternative choices
in the parallel branches of a system. In the terms of blocks as
defined in [11], it can be formulated as follows: the choices made
inside the blocks affect the behavior of the rest of the system only
through the terminal states of the blocks. Choices made inside the
parallel blocks are important for the global behavior, only if they
lead to different combinations of states of output poles. Why then
we should consider all mutual combinations of those choices?

The net in Fig. 1 has 3 parallel branches, each of which consists
of 2 alternative branches, beginning and ending up at the same
place. Such two-pole blocks are typical for structures of control
and computational algorithms [12]. The concurrent simulation
approach, as it has been described so far, would check 2x3=6
variants of execution, but there is only one reachable deadlock,
and intuitively it seems to be clear, that there is no sense to check
all those variants.

The idea of blocks and block decomposition together with the
idea of concurrent simulation allows developing analysis method

PAK 6bis/2006

excluding such checking. The first attempt to create such method
is presented in [7] (this variant does not use the persistent set
approach directly); deeper research in this direction is
a prospective topic of future work.

6. Final notes

In this paper we concentrate on one (among many others),
however very important in engineering applications, task of
analysis of Petri nets — the task of deadlock detection. This task is
essential practically, because for a system to be designed it is
important to check whether and how it can be blocked and
whether it can reach every specified terminal state. The task is also
convenient for theoretical research, because it allows comparing
easily and in evident way various analysis methods. But of course,
other analysis tasks such as checking of liveness and safeness, are
also of great importance. The described approach can be used
(with some modifications) for liveness checking; its application to
other analysis tasks requires additional research.

Summarizing, we can state, that the presented approach allows
performing certain analysis of parallel systems by partial
simulation using simpler sets of firing sequences, than the known
methods. Additional advantage of the approach is possibility of its
parallel implementation (different blocks of decomposed system
can be analyzed simultaneously. Algorithm 1 does not present this
possibility, being purely sequential; examples of parallel analysis
algorithm see in [7]). So the approach seems to be useful for
verification of big parallel systems.

The work is supported by Polish State Committee for Scientific
Research (KBN) grant Ne 4T11C 006 24.

7. Literature

[1] Adamski M., Skowronski Z.: Interpretowane sieci Petriego — model
formalny w zintegrowanym projektowaniu mikroprocesorowych
systemow sprzgtowo-programowych, PAK 2/3, 2003, 17-20.

[2] Ferrarini L.: An Incremntal Approach to Logic Controller Design with
Petri Nets, IEEE Transactions on System, Man, and Cybernetics, Vol.
22, Ne 3, 1992, 461-474.

[3] Heiner M.: Petri Net Based System Analysis Without State Explosion,
in Proceedings of. High Performance Computing’98, Boston, April
1998, 394-403.

[4] Janicki R., Koutny M.: Using Optimal Simulations to Reduce
Reachability Graphs, in Proceedings of the 2nd International
Conference CAV’90, 166-175, Springer 1991.

[5] Janicki R., Lauer P. E., Koutny M., Devillers R.: Concurrent and
Maximally Concurrent Evolution of Non-Sequential Systems,
Theoretical Computer Science, 43, 1986, 213-238.

[6] Karatkevich A.: Optimal Simulation of a-Nets, in: Proceedings of the
Polish-German Symposium SRE’2000, Zielona Gora, 2000, 217-222.

[7]1 Karatkevich A., Zakrevskij A.: Analysis of Petri Nets by Means of
Concurrent Simulation, in Proceedings of the International Conference
PARELEC, Warsaw, September 2002, 87-91.

[8] Murata T.: Petri Nets: Properties, Analysis and Applications,
Proceedings of IEEE, vol. 77, Ne 4, April 1989, pp. 548-580.

[9] Valmari A.: State of the Art Report: Stubborn Sets, Petri Net
Newsletter, April 1994, 6-14.

[10]Wolper P., Godefroid P.: Partial-Order Methods for Temporal
Verification, in Proceedings of the 4th International Conference
CONCUR’93, 233-246, Springer 1993.

[11]Zakrevskij A., Karatkevich A., Adamski M.: A Method of Analysis of
Operational Petri Nets, in Proceedings of the 8" International
Conference ACS’2001, 449-460, Kluwer Academic Publishers, 2002.

[12]3akpeBckuit A. [.: IlapamienbHble aJrOPUTMBbl JIOTHYECKOTO
ynpasienus, U'TK AHB, 1999.

Artykul recenzowany

