132

Jaroslaw WOJCIECHOWSKI

PAK vol. 53, nr 5/2007

TECHNICAL UNIVERSITY OF LODZ, DEPARTMENT OF MICROELECTRONICS AND COMPUTER SCIENCE

From formal methods to implementation based
on Petri Nets model of concurrent systems

MSc Jaroslaw WOJCIECHOWSKI

Author graduated in 2002 in computer science with
specialization in software engineering and network
systems. Is occupied in Java technology especially
applied to e-commerce. Is working on formal methods
in application in applied software engineering.

e-mail: jwojcie@dmes.pl

Abstract

Purpose of this work is to suggest a path from formal methods to
implementation in designing concurrent system, thus helping further stages
of systems development to go on. Author focuses on mapping of
nonhierarchical Coloured Petri Nets model to class model of the system in
Java and C language. Author extends among others formal model with
information which would imply generation of class models from formal
model, conforming to Java specification and C language, making
continuous integration possible. The whole cycle would be presented with
changed Petri Nets model of simple concurrent system.

Keywords: Petri Nets, formal methods, mapping, Java class, C language.

Od metod formalnych do implementacji na
przyktadzie modelu w sieci Petriego
systemu wspétbieznego

Streszczenie

Celem pracy jest zaproponowanie sciezki przejscia od modelu formalnego
systemu opisanego siecig Petriego do implementacji. Autor skupia si¢ na
rzutowaniu niehierarchicznych modeli sieci do modelu klas
odpowiadajacemu obiektowemu paradygmatowi programowania jezyka
Java i proceduralnemu dla jezyka C. Autor rozszerza model formalny
o informacj¢ umozliwiajaca dokonanie konwersji do modelu klas
i procedur. Caly cykl bedzie zaprezentowany na prostym systemie
wspotbieznym.

Slowa Kluczowe: Sieci Petriego, metody formalne, rzutowanie, modele
klas w Java, procedury w jezyku C.

1. Introduction

Techniques for mapping concurrent systems modelled with
Coloured Petri Nets to detailed design and coding is presented.
Places and transition are augmented with consistent,
complementary class model/procedural functions. The validation
information will be considered later but not in this article. The
information is the extracted from model’s xml files and generation
is accomplished. Rules for extraction are described by and
identification and code generation is done by DOM [5] parser.

2. Coloured Petri Nets

Coloured Petri Nets (CPNs) is one of several mathematical
representations of discrete distributed systems. As a modelling
language, it graphically depicts the structure of a distributed
system as a directed bipartite graph with annotations.

CPN is a language for the modelling and validation of systems
in which concurrency, communication, and synchronization play
a major role.

Coloured Petri Nets is a discrete-event modelling language
combining Petri nets with the functional programming language
Standard ML [3, 4].

Standard ML provides the primitives for the definition of data
types, describing data manipulation, and for creating compact and
parameterisable models.

3. Mapping to Java language

Author assumes that the CPN model is proper and the following

mapping does not affect simulation of the CPN model. Mapping
algorithm to generate class model [8, 9] from CPN model in
Design/CPN application to class diagrams is as follows.
a) One should mark the place with initial class place tag
as on fig. 1. The place is chosen as basic to generate
implementation class. The comment with class name
(*initialClassPlace@classname:object1*) or the colour in place
will be the name of the class.

The attributes to the class may be additionally added to initial
class place tag as text example.

(Auxiliary area)

(*InitialClassPla
ce(@classname*) OrderEntered
String id[];
String name; . . EnteredOrder
/*comment*/ [if (order=Big)
then Staff=Expert
else true]
order ' EnterOrder
(*metod@in*) (order,staff)
Order @t+5

staff

Fig. 1. CPN model annotation example
Rys. 1. Przyktad modelu CPN z dodatkowymi oznaczeniami

The initial class place tag is connected with the place with the
auxiliary connector (specified in Design/CPN).

b) The methods of the class will be relevant to transitions which

are connected to the place with arcs which was marked as initial

class place. The guard code on transition will be set as comment in
the body of the method.

- The parameters of the method are the colours from the places
which are connected to this transition but directed to the
transition.

- If we want to restrict the amount of parameters of the methods
than we mark the arc with tag (*method@in*). The returning
value from the method is the value of arc directed from the
transition or denoted by (*method@out*) as on fig. 2.

- If we do not want all the transitions to be taken as methods than
we mark the transition with (*method@nottaken*) (Conditions
on arcs will not be taken into account in this article).

c) The same steps from a) to b) we proceed with another place

which will be the initial class place.

Syntax for denoting other dependencies i.e. the problem of
polymorphism in object-oriented paradigm will be considered in
different publication.

PAK vol. 53, nr 5/2007

Class Order{}

: method EnterOrder

parametr to the method
Order
>

Ord Return object from the
rder
¢ |:> method

EnterOrder

Fig. 2. Translation schema
Rys. 2. Schemat rzutowania do modelu klas

4. Procedural vs. OO

This pseudo code shows the difference between OO approach
and procedural. The type of language for C is procedure oriented
and for Java is object oriented. Class is equivalent to structure and
method of the class to function outside the structure.

class Order Struct Order
{ {
float:price; float:price
enterOrder(Staff);

}

}
enterOrder(Order,Staff);

This is taken into account when switching between Java and C
structure of program is needed.

5. Mapping to C language

Algorithm for marking is the same. Author suggests using the
same marking for places, transitions in OO style. It will be the
option of parser Java/C language generator to choose the
implementation (time considerations is not taken into account in
this article). The algorithm will treat the transitions connected with
the palaces marked with initial class place tag as function with
appropriate rule i.e. class is treated as structure as first parameter
to function which is relevant to transitions in CPN model.
Number of parameters to function and returning value the same
treated as in mapping to Java algorithm 3 b).

Number of functions and structures goes with the same
approach as in 3 c).

6. Prerequisite to building formal model in
mapping to Java/C language

Crucial role of successful and accurate mapping is to analyze
and mark CPN model taking into account object-oriented
approach described in par. 3. To achieve this there is only needed
marking with initial class tag for each functional area of the CPN
model. This marking will not affect the model and the way it is
simulated in Design/CPN simulator.

Rule 1: if the model is sophisticated and no transition is good
for marking as the methods in OO approach than make
a submodel using substitution transitions (CPN Hierarchy) and
mark this transition with (* method@in *) tag.

7. Representation of the CPN model in xml

This is a fragment of representation of CPN model shown in
par. 2 in xml [1, 2], taken from Design/CPN export functionality.
Keywords marked bold are used in par. 8 to generate class model
and procedural representation in C.

133

<workspaceElements>
<cpnet>
<generator tool="Design/CPN" version="4.0.5"/>
<page id="id75">
<trans id="id78">
<name id="id123">
<text>Enter Order (*method@in*)</text>
</name>
<cond id="id124">
<text>
[if (order = Big) then staff = Expert else true]
</text>
</cond>
<time id="id127"> ...
<text>@+5</text>
</time>
</trans>...
<arc id="id135" orientation="ptot">...
<placeend idref="id106"/>
<transend idref="id78"/>

<annot id="id137">
<text>order</text>
</annot>

</arc>

<place id="id106">
<!-- 3 regions(s) were found -->
<!-- Region 1 of node -->
<type id="id108">...
<text>Order</text>
<name id="id109">

<text>Order In</text>

</place>

<aux id="id133">
<text>
(*InitialClassPlace@classneme:Order*)
String id[];
String name;
</text>

</aux>

<aux-conn id="id162" orientation="nodir">

<nodel idref="id133"/>

<node2 idref="id106"/>

<!-- no text was found -->
</aux-conn>

</page>
</cpnet>
</workspaceElements>

8. Object model of class in Java of functional
entity of CPN model

This class model represents container which holds information
about classes and methods to be generated.

Class Class_{
String name;
String comment;
Method methods(];
intid_aux_cpn;
int id_place_cpn
15

Class Method {
String in[];
String name;
String out;

134

String comment;

3

Below is presented a list in Java language which holds all
marked classes according to specification in par. 3 and 5.

List I=new Arraylist();
l.add(new Class_);

9. Extracting dependencies using DOM

DOM parser builds in memory the complete structure of the
document to manipulate an XML document. Once the document is
loaded, its data can be manipulated using the DOM. The DOM
treats the XML document as a tree.

Below the pseudo code for extracting dependencies is
presented:

Initialize list classes_list to keep object model of classes
Load xml document

For all elements of tag aux
begin

Jor each element get value of node text which contains
“InitialClassPlace” annotation

Take identifier of auxiliary region and find identifier of place
from the auxiliary connection
beginl

find auxiliary connection in CPN model which points to a
place that is a starting class container

begin2
find place tag for “InitialClassPlace”
get class name
initialize class_object type Class_

begin3
get method of class from transition connected to found
place
initialize class Method object type Method

begind
get parameters of method from places directed to
found transition

get return value for the method from place which is
directed from transition to place

end4
end3
end?2
add class _object to classes_list
endl
end

if classes_list is not empty and user marked ‘to Java’
then

print Java code
else if classes_list is not empty

print C code

10. Code generator for Java/C

a) Java

class Order{
/*

String idf];
String name;

PAK vol. 53, nr 5/2007

*/
OrderEntered enter_order(Staff staff, Order order){
/*[if (order = Big) then staff = Expert else true]*/

/

class Staff{};

class OrderEntered{
Staff's;

Order o;

}’.

b) C language
struct Order{
/*

String id[];
String name;
*/

}’.

struct Staff{};

struct OrderEntered{};

OrderEntered enter_order(Staff staff,Order order);
OrderEntered enter_order(Staff staff,Order order){
/*[if (order = Big) then staff = Expert else true]*/

/

11. Conclusions

In this article a technique for mapping concurrent systems
modelled with Coloured Petri Nets to design and coding to object
oriented design in Java and procedural approach with C language
was proposed. Although this is starting point to consider detailed
design and verification.

12. Future work

Considering transformation of CPN model to design without
mapping tags will be next step of work. This should be considered
deeper since it gives exaggerated code because common places to
particular transitions would have the same methods.

Consider working on new syntax for denoting other
dependencies i.e. the problem of polymorphism in object-oriented
[6, 7] paradigm, time considerations, and validation information
allowing checking model time constraints with implementation.

Consider generating representation to pseudo code, which would be
parsed by back end parser generator for appropriate implementation.

13. Literatura

[1] Meta Software Corporation, Design/CPN tutorial, Cambridge

[2] Wegrzyn A.: Symboliczna analiza ukladéw sterowania binarnego
z wykorzystaniem wybranych metod analizy sieci petriego, Oficyna
wydawnicza Uniwersytetu Zielonogorskiego 2003

[3] Claude Girault, Rudiger Valk: Petri Nets for System Engeeniering,
Springer 2002

[4] Jensen K., Kristensen L.M., Wells L.: Coloured Petri Nets and CPN
Tools for Modelling and Validation of Concurrent Systems,
Department of Com puter Science University of Aarhus.

[5S] Document Object Model, DOM parser http://www.w3.org/DOM/faq.html

[6] Gosling J., Joy B., Steele G., Bracha G. “The Java Language
Specifcation”, Second Edition. Addison-Wesley, 2000

[7] Agha G., De Cindio Eds F. Concurrent Object-Oriented Programming
and Petri Nets. Lecture Note in Computer Science. Spring-Verlag, 1998.

[8] Puczynski M., Wegrzyn M., Implementacja hierarchicznej sieci
Petriego w C++, XIII Krajowe Sympozjum Kota Zastosowan
Cybernetycznych, WAT, Warszawa, 13.11.1997

[9] Bukowiec A., Wegrzyn A. Metody zintegrowanego projektowania
sprzgtu i oprogramowania z wykorzystaniem nowoczesnych uktadow
programowalnych, XVII Krajowe Sympozjum Kota Zainteresowan
Cybernetycznych, WAT, Warszawa, 08.11.2001, ss.7-12

Artykud recenzowany

