
Piotr GROBELNY
UNIVERSITY OF ZIELONA GORA, FACULTY OF ELECTRICAL ENGINEERING, COMPUTER SCIENCE AND TELECOMMUNICATION

Knowledge Representation in Services Oriented Architecture

mgr in�. Piotr Grobelny

Ph.D. student in Institute of Control and Computa-
tion Engineering, Faculty of Electrical Engineering,
Computer Science and Telecommunication, Uni-
versity of Zielona Gora. Professionally the Re-
search and Development Director in software com-
pany ASTEC from Zielona Gora. Research inter-
ests: business processes management, distributed
systems and services oriented architecture, expert
systems, geographic information systems.

e-mail: P.Grobelny@weit.uz.zgora.pl

Abstract

This paper addresses the problem of supporting the software development proc-
ess through the artificial intelligence. The expert systems could advise the Do-
main Engineer in programming without the detailed experience in programming
languages. He will use and integrate, with the help of deductive database and
domain knowledge, the previously developed software components to new
complex functionalities.
The Services Oriented Architecture (SOA) allows to fulfill these requirements.
SOA is a collection of Web Services that communicate with one another. The
services are self-contained and do not depend on the context or state of the
other services. They work within the distributed systems architecture. The au-
thor of this paper proposed in previous work the proof of concept prototype
based on the Java framework for intelligent discovery and matchmaking atomic
Web Services within integrated workflow called complex service.
The objective of this document is to provide the knowledge representation
about atomic Web Services which will be registered as the facts in the deduc-
tive database. The author proposes to use the decision rules in decision tables
for representing the service model which consists of semantic specification, in-
terface description, service quality (QoS), non-functional properties. Also the
use of Domain Specific Languages (DSL) for modeling Domain Engineer’s re-
quests to the expert system will be considered within this document. As the il-
lustrative use case for described knowledge representation the author proposes
the domain of SOA-based geographic information systems (GIS) which repre-
sent a new branch of information and communication technologies.

Keywords: domain engineering, Services Oriented Architecture, deductive da-
tabase, expert system, Domain Specific Languages, service model, complex
service

REPREZENTACJA WIEDZY W ARCHITEKTURZE

ZORIENTOWANEJ NA USŁUGI (SOA)

Streszczenie

W artykule przedstawiono problem wspomagania procesu tworzenia oprogra-
mowania przez sztuczn� inteligencj�. System ekspertowy mo�e pełni� rol� do-
radcy in�yniera domeny, który nie ma szczegółowej wiedzy w j�zykach pro-
gramowania. Ma on mo�liwo�� u�ycia i integracji, z pomoc� dedukcyjnej bazy
danych oraz wiedzy dziedzinowej, wcze�niej stworzonych komponentów pro-
gramowych w usługi zło�one. Architektura zorientowana na usługi pozwala na
spełnienie tych wymogów. SOA jest zbiorem usług internetowych, które ko-
munikuj� si� ze sob�. S� one samowystarczalne oraz niezale�ne od innych
usług oraz ulokowane s� w systemach rozproszonych. Autor tego artykułu za-
proponował we wcze�niejszej pracy prototyp bazuj�cy na platformie Java do
odkrywania i dopasowywania atomowych usług w ramach zintegrowanego ła�-
cucha zwanego usług� zło�on�.
Celem tego dokumentu jest dostarczenie opisu reprezentacji wiedzy w postaci
modeli jednostkowych serwisów, zarejestrowanych jako fakty w systemie eks-
pertowym. Autor proponuje u�ycie reguł decyzyjnych w tabelach decyzyjnych
jako reprezentacje modeli tych usług, które składaj� si� ze specyfikacji seman-
tycznej, opisu interfejsu, nie-funkcjonalnych wła�ciwo�ci oraz atrybutów okre-
�laj�cych cechy jako�ciowe (QoS).
W pracy tej rozwa�ane jest równie� u�ycie przez in�yniera domeny j�zyków
specyficznych dla danej dziedziny (DSL) w celu modelowania zapyta� do de-
dukcyjnej bazy danych. W celach demonstracyjnych przedstawiono przypadek
u�ycia geograficznych systemów informacyjnych bazuj�cych na SOA, które s�
now� ciekaw� dziedzin� zastosowania w bran�y IT.

Słowa kluczowe: in�ynieria domenowa, architektura zorientowana na usługi
(SOA), dedukcyjna baza danych, systemy ekspertowe, DSL, model usługi,
usługa zło�ona

1. Introduction

The aim of this document is to propose a new approach of soft-
ware development supported by the artificial intelligence. The Se-
rvices Oriented Architecture (SOA), especially the Web Services
go towards the need of developing software families through Do-
main Engineer which has no detailed experience in computer pro-
gramming, but has strong expert knowledge. This process could
be supported by expert systems.

The background of the consideration is the Domain Engineering
approach [8] which relies on developing software families from
reusable components which are parts of common domain system.
In the future, the software can be named service-ware, where all
resources are services in a Service Oriented Architecture. The
main idea of this approach is that business processes engineer op-
erates on atomic services, not on the software or hardware that
implements the service [9].

The method proposed within this paper could be used in larges
companies enabled on SOA for realizing business processes man-
agement (BPM) applications. Web Services are considered as a
promising technology for Business-to-Business (B2B) integration.
A set of services from different providers can be composed to-
gether to provide new complex functionalities.

2. Concept

Fig. 1 presents the overview of the approach considered within
this document. Expert system plays the role of decision supporting
system. Its task is to provide the proposition of complex service
(workflow of atomic Web Services) basing on the Domain Engi-
neer’s request explained by means of Domain Specific Language
(DSL). The facts in the deductive database are delivered by Soft-
ware Developer which implements new functionalities fashioned
as the Web Services compliant with enterprise SOA infrastructure.
Software Developer registers the atomic service model into facts
database and also the service instance in SOA registrars.

Facts Database

Inference Engine

Domain Engineer

Software Developer Atomic Web Service Model

DSL
Request Services

Workflow

Expert System /
Deductive Database

Fig. 1. The concept overview
Rys. 1. Prezentacja koncepcji

The author of this paper proposed in previous work [3] the
proof of concept prototype based on the Java framework for intel-
ligent discovery and matchmaking atomic Web Services within in-
tegrated workflow called complex service. Thus, the problem of

PRZEGLĄD TELEKOMUNIKACYJNY - ROCZNIK LXXXI - nr 6/2008 793

knowledge representation in Services Oriented Architecture will
be considered in next sections.

3. Problem statement and challenges

The solution issue of writing computer program through other
computer program is very idealistic challenge, so it seems to be
realistic when some assumptions have been fulfilled. The Services
Oriented Architecture based on a collection of Web Services that
communicate with one another within the distributed systems,
which are self-contained and do not depend on the context or state
of the other services, allows for discovery of new program func-
tionalities by expert system. The next assumption is that all actors
of Fig. 1 should use common domain namespace (domain ob-
jects) expressed through domain ontologies (for instance Web
Service Modeling Ontology [20]).

The aim of research work described within this document is to
provide the sufficient knowledge representation about Web Ser-
vices which consists of service models, that involve interface de-
scription and semantic specification as well as information about
service quality (QoS) and non-functional properties.

The properly defined models of atomic Web Services registered
as the facts in expert system will enable inferring knowledge about
enterprise software resources by Domain Engineer and matchmak-
ing them as the new applications.

4. Related work

The author of [1] describes the semantic service specification,
which is the basis for the composition of services to application
service processes. Semantic-specified services are a precondition
for the development of complex functionality within application
service processes. If the user wants to use a service with a desired
functionality he sends the semantically specified request and
checks which existing services can fulfill this request. The seman-
tic service specification specifies the characteristics of a service. It
means, semantic service specification defines what the service
does, not how the service doest it. The characteristics of a service
contain for example the input parameter, the results, the effects
(changing of the world) and the conditions for a successful execu-
tion of the service. The first requirement of the semantic service
specification is an existing domain ontology, which describes the
domain specific concepts and associations and attributes of these
concepts. A further requirement for the description of the semantic
service specification is a unified description language. The F-
Logic language [17] and its extension called Flora-2 [19] have
been used. F-Logic is a deductive, object oriented database lan-
guage which combines the declarative semantics and expressive-
ness of deductive database languages with the rich data modeling
capabilities supported by the object oriented data model [1].

The author of this paper proposes other approach to explain the
service models using Java language expressions. The main objec-
tive for this solution is to combine in one programming language:
knowledge about services, expert system/rule engine compliant
with JSR-94 specification (implementation of the Java Rule En-
gine API known as JSR94, which allows for support of multiple
rule engines from a single API [16]) as well as J2EE [18] middle-
ware and software patterns which is the powerful development
platform for Services Oriented Architecture [2]. In the previous
paper author proposed the architecture for complex services proto-
typing and proven the feasibility of this approach on the Java plat-
form using the developed prototype[3].

A proper service description answers three questions about a
service: what the service does (including its non-functional de-
scription), where it is located, and how it should be executed [4].
The Fig. 2 presents the atomic service model proposed by author
of this paper which answers these questions.

Web Services are software applications with public interfaces
described in XML. According to the established standards, Web
Service interfaces are defined in Web Service Description Lan-
guage (WSDL) [5]. Published in Universal Description, Discovery

and Integration (UDDI) registrars [10] could be discovered and
invoked by other software components. These systems interact
with Web Services using XML-based message in Simple Object
Access Protocol (SOAP).

Fig. 2. The model of atomic service
Rys. 2. Model usługi jednostkowej

Service Grounding Specification (see Fig. 2) refers to the
WSDL description. WSDL consists of a hierarchy of objects (au-
thor proposed within the previous paper [3] to use domain ontol-
ogy to define these objects), from the most basic data type,
through message, operation, port type, binding and port to service
itself [5]. Its wsdlUri attribute is the Unified Resource Identifier
(URI) and refers to the service WSDL file. WSDL does not pro-
vide methods to describe non-functional service properties.

Quality of Service (QoS) in service oriented platforms is a cru-
cial attribute in assessing proper operation of services. Loosely
coupled distributed systems in service discovery, composition and
execution have emerged as a new paradigm in building virtual or-
ganizations. In order to support rapid and dynamic composition of
services it should be possible to locate services that meet user’s
functional requirements. Moreover, it should be possible to select
the best service based on their QoS. It is important to stress the
difference between non-functional (NF) and QoS parameters. QoS
parameters are a subset of NF parameters. NF parameters may in-
clude some information that is not directly computable, for exam-
ple textual service description, phone numbers to service develop-
ers (providers), date of service preparation etc. As a result of that,
when using either NF or QoS concepts, one should distinguish that
NF relates to a whole set of non-functional parameters, and QoS
refers to those NF parameters that may be computationally proc-
essed, compared and verified with greater ease [4].

In service arena it is suggested that the term QoS should refer
not only to such basic, originating from networking parameters as
bandwidth, latency, error rate or availability (the probability that
the service is available), reliability (stability of a service function-
ality, i.e. ability of a service to perform its functions under stated
conditions). Therefore, additional aspects come into consideration,
such as speed of operation, robustness, accuracy of operation, de-
pendability, capacity (a limit of concurrent requests for guaranteed
performance), throughput (the number of requests served in a
given time period), response time (the time taken by a service to
process its sequence of activities), execution cost (the amount of
money for a single service execution). Even parameters such as
operating system and storage capacity of the executing system
may by considered QoS parameters, as they affect end-to-end op-
eration of a service [4] [7].

Currently, most approaches that deal with quality of services
address only some generic parameters such as execution price,
execution duration, service availability and reliability [6]. These
parameters may be defined as follows [4]:

• Execution price – the amount of money that a service re-
questor has to pay to the service provider for using the Web
Service.

• Execution duration (also called latency time) – measures the
expected delay in seconds between the moment when a re-
quest is sent and the moment when the service is rendered.

PRZEGLĄD TELEKOMUNIKACYJNY - ROCZNIK LXXXI - nr 6/2008 794

Execution duration is a sum of the processing time and the
transmission time.

• Reputation (also called Service quality reputation) – a meas-
ure of service trustworthiness. It depends mainly on end
user’s experience of using the service. Different users may
have different opinions on the same service.

4. Implementation

All service instances available in particular domain are treated
as the knowledge representation system and can be explained as
the decision table which contains production rules. Decision tables
specify what decisions should be made when some conditions are
fulfilled [11]. This document considers the knowledge reasoning
problem employing decision tables formalism

K = (U, A) (1)

K (1) is the knowledge representation system, where:
U is a nonempty, finite set called universe
A is a nonempty, set of primitive attributes

�

The knowledge representation system which distinguishes the
condition and decision attributes can be called decision table T:

T = (U, A, C, D) (2)

Where C, D ⊂ A are two subsets of attributes called condition and
decision attributes.
Any implication

Φ → Ψ (3)

is considered as the decision rule and Φ, Ψ are called predecessor
and successor respectively.

If Φ → Ψ is decision rule and P contains all attributes occurring

in Φ (condition attributes) and Q contains all attributes occurring

in Ψ (decision attributes) then this decision rule can be called PQ-
rule.

Let’s consider the real decision table (see Tab. 1). which
represents the knowledge system from geographic information
systems domain in Services Oriented Architecture and the facts

are explained as the PQ-rules��The use case scenario and the ser-

vices landscape were described within author’s previous paper [3].

Tab. 1. The example of decision table with selected model attributes
Tab. 1. Przykładowa tablica decyzyjna z wybranymi atrybutami modelu

Opera-

tion

Name

Input

Parame-

ters

Out-

put

Para-

meter

Provider Exe-

cu-

tion

Price

Execu-

tion

Dura-

tion

Reputa-

tion

Service

Name

P1 P2 P3 P4 P5 P6 P7 Q1

getMap {Coordi-
nates}

Map TeleAtlas 5$ 12ms high GisMap

provi-
deMap

{Coordi-
nates}

Map GISAtlas 0$ 24ms me-
dium

PrintMap

drawPo-
int

{Coordi-
nates,
Map}

Point-
Marker

GIS
Company

0$ 2ms high DrawPo-
int

draw-
Segment

{Coordi-
nates,

Coordina-
tes, Map}

Seg-
men-
tLine

GIS
Company

2$ 5ms high Draw-
Segment

compu-
teDi-
stance

{Coordi-
nates,

Coordina-
tes}

Di-
stance

ITS 0$ 1ms me-
dium

Compu-
teSeg-

mentDi-
stance

The columns P1-P7 represent the condition attributes and col-
umn Q1 represents the decision attribute of the PQ-rule. These
PQ-rules are stored as the facts in expert system database.
The equation (4) formalizes a possible representation of PQ-rule
from Tab. 1 in accordance to the equation (3).

P1=getMap ∧ P2={Coordinates} ∧ P3=Map �
Q1=GisMap

(4)

The author of this paper prepared the facts database in terms of
production rules regarding equation 4 and Tab. 1 as the Java class
which is loaded into the Working Memory of expert system.

Fig. 3 presents the example of the defined fact.

public class FactsDatabase {
 WorkingMemory rulesEngineMemory;

public FactsDatabase(WorkingMemory rulesEngineMemory) {
this.rulesEngineMemory = rulesEngineMemory;

}

public void activateFacts() {
 AtomicService as;
 Collection inputParameters;
 QoS qos;

// PQ rule
// P-attributes

 as = new AtomicService();
 as.setOperationName("getMap");
 inputParameters = new ArrayList();
 inputParameters.add(new Coordi-
nates().getClass().getName());
 as.setInputParameters(inputParameters);
 as.setOutputParameter(new
Map().getClass().getName());
 as.setProvider("TeleAtlas");
 qos = new QoS();
 qos.setExecutionPrice(5);
 qos.setExecutionDuration(12);
 qos.setReputation("high");
 as.setQos(qos);

//Q-attributes
 as.setServiceName("GisMap");
 as.setServiceDescription("Service creates a map
according to provided longitude and latitude.");
 rulesEngineMemory.insert(as);
}

Fig. 3. The example of fact implemented in Java
Rys. 3. Przykład faktu zaimplementowanego w j�zyku Java

As the expert system the JBoss DROOLS [12] rule engine
based on the RETE algorithm [13] has been used. Drools imple-
ments and extends the Rete algorithm which is called ReteOO,
what signifying that Drools has an enhanced and optimized im-
plementation of the Rete algorithm for Object Oriented systems
[14].

The Domain Engineer models the request to the deductive data-
base as the production rules presented in equation (3) manner, also
to infer conclusions which results in actions “When <conditions>

then <actions>”. The advantage of using rules engine is the de-
clarative programming. Rules are much easier to read than source
code. Also the ability of creation of executable domain knowledge
repository plays the important role. Domain experts are often a
wealth of knowledge about business rules and processes. They
typically are non-technical, but can be very logical. Rules can al-
low them to express the logic in their own terms [12].

rule "serviceProposition1"
when
#conditions
as : AtomicService(outputParameter == "soa-
rules.ontology.Map", qos.executionDuration < 20 , ser-
viceName : serviceName, serviceDescription : serviceDe-
scription)
then
#actions
System.out.println("Proposed service1: " + serviceName +
" - " + serviceDescription);
End

Fig. 4. The example of production rule
Rys. 4. Przykład reguły produkcyjnej

PRZEGLĄD TELEKOMUNIKACYJNY - ROCZNIK LXXXI - nr 6/2008 795

The production rule example (Fig. 4) shows the strength of
proposed approach. The Domain Engineer models the request to
the deductive database as the one rule instead of a lot of source
code lines and nested loops in structural programming languages
or SQL statements. But, the production rules modeling could be
much easier through usage of Domain Specific Language (DSL).
It is the way of extending the rule to problem domain. Simple
DSL can be implemented by lexical processing. In addition, DSL
can be used to create front-ends to existing systems or to express
complicated data structures. A DSL is a programming language
tailored especially to an application domain: rather than being for
a general purpose, it captures precisely the domain's semantics
[15]. DSL can act as "patterns" of conditions or actions that are
used in rules, only with parameters changing each time [12]. Rules
expressed in Domain Specific Language have human-readable
form and match the expression used by domain experts [15].

Fig. 5 show how the rule can be transformed to “patterns”
of DSL.

[conditions]

DSL Language expression:
There is an Atomic Service where
Rule mapping:
 AtomicService(serviceName : serviceName, ser-
viceDescription : serviceDescription)

DSL Language expression:
- output parameter equals "{value}"
Rule mapping:
outputParameter == "{value}"

DSL Language expression:
- executionDuration is less than "{value}" msec
Rule mapping:
qos.executionDuration < "{value}"

[actions]

DSL Language expression:
Print service name and service description
Rule mapping:
System.out.println("Proposed service1: " + serviceName +
" - " + serviceDescription);

Fig. 5 The example “patterns” of Domain Specific Language
Rys. 5. Przykład “etykiet” j�zyka specyficznego dla domeny

The usage of “patterns” of Domain Specific Language allows
the Domain Engineer to model the request to the expert system
and find the desired Web Service in friendly manner as shown on
Fig. 6.

�

rule "serviceProposition1"

when
#conditions
There is an Atomic Service where
- output parameter equals "soa-

rules.ontology.Map"
- executionDuration is less than "20" msec

then
#actions
Print service name and service description

end

Fig. 6. The example of human-readable production rule
Rys. 6. Przykład reguły produkcyjnej w formacie zrozumiałym dla człowieka

5. Conclusion

The presented approach allows to support the Domain Engineer
in developing applications from business processes management
area. The Domain Engineer has no detailed experience in com-
puter programming, but has strong expert knowledge. He can
model the requests to the deductive database as the production
rules in human-readable format with usage of Domain Specific
Languages instead of several lines and nested loops of Java
or SQL code.

The author discussed within this paper the knowledge represen-
tation in SOA explained as the decision tables with atomic service
models which involve semantic specification, interface description
(WSDL), non-functional properties and quality of services (QoS).

The further research will be focused on refinement of reasoning
process with usage of other techniques of the artificial intelli-
gence, development of domain specific languages for GIS domain,
storage of the facts before loading to production memory (the tra-
ditional solution as the text files is not enough convenient to hold
on objects) as well as discovery and matchmaking workflows of
complex services.

3. Bibliography

[1] Donath Steffi, Automatic Creation of Service Specifications, 6th Annual
International Conference on Object-Oriented and Internet-Based Tech-
nologies, Concepts, and Applications for Networked World,
Net.ObjectDays Proceedings, pp.79-89, September 19-22, 2005

[2] Hansen Mark, SOA Using Java Web Services, Person Education Inc.,
Prentice Hall, 2007

[3] Grobelny Piotr, Rapid Prototyping of Complex Services in SOA Archi-
tecture, IX International PhD Workshop OWD’2007, Conference Ar-
chives PTETiS, vol. 23(1), pp.71-76, 2007

[4] Kowalkiewicz Marek, Current challenges in non-functional service de-
scription – state of the art and discussion on research results,
Net.ObjectDays Proceedings, Spetember 19-22, 2005 pp.91-96

[5] Christensen, E., F.Curbera, et al. Web Services Description Language
(WSDL) 1.1, World Wide Web Consortium (W3C), 2001

[6] Zeng, L., B. Benatallah, et al., Quality driven Web Services Composition.
Proceedings of the 12th international conference on World Wide Web
(WWW) Budapest, Hungary, ACM Press 2003

[7] Kokash Natallia, D’Andrea, Vinzenzo, Evaluating Quality of Web Ser-
vices: A Risk-Driven Approach, Business Information Systems, Witold
Abramowicz (Ed.) 10th International Conference BIS 2007 proceedings,
LNCS 4439, pp.180-194, Springer, 2007

[8] Czarnecki Krzysztof, Eisenecker Ulrich: Generative Programming –
Methods, Tools and Applications, Addison Wesley, Boston, MA, 2000

[9] Ekelhart Andreas et al.: Security Issues for the Use of Semantic Web in E-
Commerce, Business Information Systems, Witold Abramowicz (Ed.)
10th International Conference BIS 2007 proceedings, LNCS 4439 pp.1-
13, Springer, 2007

[10] UDDI Specifications, http://www.oasis-open.org/committees/uddi-
spec/doc/tcspecs.htm, accessed January 2007

[11] Pawlak Zdzisław: ROUGH SETS Theoretical Aspects of Reasoning
about Data, Kluwer Academic Publishers, 1991

[12] Proctor Mark et al.: Drools Documentation,
http://downloads.jboss.com/drools/docs/4.0.4.17825.GA/html_single/ in-
dex.html, accessed January 2008

[13] ForgyC., RETE: A Fast Algorithm for the Many Pattern Many Object
Pattern Match Problem, Artificial Intelligence, 19(1), pp.17-37 Sept. 1982

[14] Doorenbos Robert B., Production Matching for Large Learning Systems
(Rete/UL), PhD thesis, Carnegie Mellon University, January 31, 1995

[15] Spinellis Diomidis, Notable design patterns for domain-specific lan-
guages, The Journal of Systems and Software 56 (2001) pp. 91-99, El-
sevier 2001

[16] Toussaint Alex, Java Rule Engine API™ JSR-94, Java Community Proc-
ess, http://jcp.org/en/jsr/detail?id=94, BEA Systems, September 2003

[17] Kifer Michael et al.: Logical Foundations of Object-Oriented and Frame-
Based Languages, Journal of the Association for Computing Machinery,
May 1995

[18] Sun Microsystems, Simplified Guide to the Java 2 Enterprise Edition,
http://java.sun.com/j2ee/reference/whitepapers/j2ee_guide.pdf, Accessed
January 2008

[19] Yang Guizhen et al.: FLORA-2: A Rule-Based Knowledge Representation

and Inference Infrastructure for the Semantic Web, Second International
Conference on Ontologies, Databases and Applications of Semantics
(ODBASE), Catania, Sicily, Italy, November 2003

[20] Dumitru Roman et al.: Web Service Modeling Ontology, Applied Ontol-
ogy, 1(1), pp. 77-106, 2005

Title: REPREZENTACJA WIEDZY W ARCHITEKTURZE
ZORIENTOWANEJ NA USŁUGI (SOA)

Artykuł recenzowany

PRZEGLĄD TELEKOMUNIKACYJNY - ROCZNIK LXXXI - nr 6/2008 796

