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Abstract 

The paper presents some methods of detection of global and local deadlocks  

and some problems of more general kind in the control systems specified as 

concurrent automata. The proposed methods reduce the problems to solving the 

systems of logical equations. Modeling of the FSM networks by the Petri nets is 

used. The FSM networks are specified using the Statecharts. An example of a 

network analysis is given. The methods can be applied in the systems of 

computer-aided design of digital control systems as the part of verification 

process. 

Keywords: digital controllers, FSM networks, Petri nets, Statecharts, 

parallelism. 

Streszczenie 

Artyku" przedstawia wybrane metody wykrywania globalnych i lokalnych za-

kleszcze! oraz niektórych szerszych problemów w uk"adach sterowania, przed-

stawionych jako wspó"bie ne automaty stanów. W proponowanych metodach 

wykrywanie problemów sprowadza si# do rozwi$zania uk"adów równa! logicz-

nych. Stosuje si# modelowanie sieci automatowych sieciami Petriego. W arty-

kule przedstawiono tak e przyk"ad analizy sieci automatowej. Proponowane 

metody mog$ znale%& zastosowanie w systemach komputerowego wspomaga-

nia projektowania sterowników cyfrowych na etapie weryfikacji. 

S!owa kluczowe: sterowniki cyfrowe, sieci automatów, sieci Petriego, State-

charts, wspó"bie no'&. 

1. Introduction 

Finite State Machine (FSM) is the basic model of a discrete 

device, used in formal design of digital systems. However 

behavior of a complex system usually cannot be conveniently 

specified by single FSM because of concurrently acting objects 

and/or processes in such system. That is the reason of applying 

parallel extensions of finite automata in the formal design 

methods. 

There are two main classes of such extensions: one is based on 

the Petri nets [1][10][13][15], another is based on parallel 

composition of the Finite State Machines [2][8]. The first one is 

convenient to use, when in the specified system the parallel 

processes divide and merge in a complex way, which cannot be 

described only by parallel and sequential composition of states. 

Petri nets provide more flexibility in the descriptions, but they are 

difficult to analyze. So, when the number of the parallel processes 

is constant or when parallel structure of a system can be described 

by the fork-join operations, where every “fork” has its “join”, 

FSM networks are more convenient to use. However, it is just a 

question of convenience, because the modeling power of both 

kinds of parallel automata is the same. 

Formal verification of FSM networks is simpler than such of the 

Petri nets, but there are also the non-trivial tasks caused by 

interaction between the automata in the networks, such as 

detection of deadlocks. In the paper some methods of deadlock 

and livelock detection are presented. 

We use the event-based formalism of Statecharts [3] to describe 

the FSM networks. More concretely, we use a restricted, fully 

synthesizable model, representing a subset of Statecharts, as 

described in [8]. We consider only the asynchronous networks. 

2. Networks without hierarchy: deadlocks… 

For the flat (without hierarchy) FSM networks the number of 

active local states is the same in all global states, and every 

automaton at every moment has exactly one active state.  

An internal event in an FSM network without hierarchy is 

absent because of a deadlock, only if all automata which can 

generate this event are deadlocked, and neither of them generates 

it in its deadlocked state as a static event. For static events it can 

be described as follows: 
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For dynamic events: 
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where: 

%i - a Boolean variable meaning presence or absence of event ei; 

saction(p) – set of static events generated by state p; 

taction(t) – set of dynamic events generated by transition p; 

Pj – set of states of FSM number j; 

xi – a Boolean variable meaning activity or passivity of state pi. 

As far as in a deadlock, by definition, no transition can fire, for 

every active deadlocked state p the following condition holds: 

 &t: (out(t)=p) ' (trigger(t)(Z#))  (3) 

where: 

out(t) – initial state of transition t; 

trigger(t) – set of events necessary for transition t to be 

executed; 

Z – set of internal events. 

From (1) and (2) the following equations can be constructed for 

every state pm which satisfies (3): 
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Equation (4) is to be used for the Moore automata, equation (5) 

– for the Mealy automata. Such equations for all states satisfying 

(3) together with the characteristic function (which usually can be 

calculated in a reasonable time [7][8]) specify a system of logical 

equations, which roots correspond to the reachable deadlocks. 

3. …and livelocks 

A more general class of behavioral problems than the deadlocks 

is unreachability of local states, which covers both deadlocks and 

livelocks (a livelock is a situation when two or more processes can 

change their states, but cannot attain some of the states). If some 

local states are inactive in all reachable global states, this can be 

directly detected from the characteristic function. However 

characteristic function does not answer the question, whether a 

local state, initially reachable, can become unreachable, when the 

system attains one of the global states.  
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Let us formulate the following task: an FSM network without 

hierarchy is given. Detect such global states of the network, from 

which some local states are not reachable, if such global states 

exist. 

An FSM network can be modeled by a Petri net by applying the 

algorithm presented in [4]. A simple example of such modeling is 

shown in Fig. 1.  
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Fig. 1. An FSM network (a) and the modeling Petri net (b) 

Rys. 1. Sie& FSM (a) i modeluj$ca sie& Petriego (b) 

 

Below we detect the unreachable states by analyzing the 

modeling Petri nets. We show that existing in such net a siphon of 

certain kind means, that some states may become unreachable.  

But before analyzing a Petri net, it is reasonable to reduce it, if it 

is possible. A net may contain the sequential fragments without 

any synchronization with other parallel processes. Such a 

fragment corresponds to a part of state transition graph of an FSM, 

in which the automaton reacts only on the external events and 

does not generate the internal events, i.e. does not communicate 

with other automata of the network. Then the following operation 

should be performed with such subnet. 

1 If the subnet has only one input place and one output place, 

and no place of it is initially marked or its input place is 

initially marked, replace the whole subnet by single place (if 

the input place is initially marked, the introduced place 

should be initially marked). Otherwise execute 2-4: 

2 Check for every input place, which output places are 

reachable from it. 

3 For every input place add a direct transition to every output 

place reachable from it. 

4 Remove all other places and transitions of the subnet. 

In Fig. 2 an example of such reduction is shown. 
a)   b) 
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Fig. 2. An example of reduction. Fragment of a net before (a) and after (b) 

reduction 

Rys. 2. Przyk"ad redukcji. Fragment sieci przed redukcj$ (a) i po (b) 

 

The proposed method is based on the following affirmation. 

Affirmation 1. Let N be an FSM network and * - the Petri net 

modeling it. If there is siphon D in * such that there is no FSM in 

N for which D contains all places corresponding to it, then there 

exists a global state of N such that no local states corresponding to 

the places of D are reachable. 

Proof. If D does not contain the places corresponding to all 

states of any FSM in the network, then there exists a global state 

M’ of N such that no place in D is marked in the corresponding 

marking M of *. No marking which marks any place belonging to 

D is reachable from M, hence no such global state is reachable in 

N from M’, that a local state corresponding to a place in D is 

active. 

Not all situations in which local states may become unreachable, 

can be captured by calculation of siphons, which is illustrated by 

Fig. 3. The Petri net modeling presented FSM network has no 

deadlocks of the kind mentioned in Affirmation 1, but one of the 

local states may become unreachable. However, the class of the 

situations which can be detected by means of calculation of 

siphons covers all global and local deadlocks and part of livelocks. 

For detailed proof of this statement see [6]. 
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Fig. 3. State p7 can become unreachable 

Rys. 3. Stan p7 mo e sta& si# nieosi$galny 

 

There are lot of methods of calculation of siphons in the Petri 

nets. An efficient approach to such calculation is based on 

representation of the net structure by means of a system of 

Boolean equations, which roots correspond to the siphons 

[9][14][15]. Such equations can be solved in several different 

ways: by combinatorial search in the ternary matrices [14], by 

applying Thelen’s prime implicant method [12] or Gentzen 

symbolic deduction [11]. Review of the methods of siphon 

detection and the bibliography can be found in [12]. 

Below, the algorithm detecting possible unreachability situations 

for given FSM network N is described. 

 

Algorithm 1 

1. Create for N the modeling Petri net *. 

2. If possible, perform reduction of *, as described above. 

3. Detect the siphons of *, satisfying the condition formulated 

in Affirmation 1. 

4. Every obtained siphon D specifies a set of global states (all 

the global states in which no local states corresponding to 

places in D are active) and a set of local states (corresponding 

to the places belonging to D) not reachable from them. Check 

reachability of the specified global states from the initial state 

by means of the characteristic function. 

4. Hierarchical networks 

In flat FSM networks, activity of a local state in a deadlock 

implicates activity of some other local states, as it is described by 

equations (4,5). In hierarchical networks, lack of an event does not 

necessary mean that an FSM which can generate this event is 

deadlocked; it is possible that this FSM is not active at all, and 

another FSM at a higher hierarchy level is deadlocked. We 

propose the following approach for this case: consider for every 

local state satisfying (3), passivity of which local states it 

implicates [4][6]. The difference in comparison to the case of flat 

nets and equations (4,5) is that for the flat nets both local and 

global deadlocks can be detected; and the proposed method for the 
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hierarchical Petri nets allows to detect only the global deadlocks. 

In a global deadlock, only the static and external events can be 

available, and for the static events we can write: 
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It follows, that a local state pm can be active in a deadlock, only 

if  
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Solving of the system of equations consisting of equations (7) 

for every local state satisfying (3) together with the characteristic 

function, allows to obtain all reachable global deadlocks.  

5. Example 

Let us consider the network presented in Fig. 4. To simplify the 

diagram, only the internal events are shown. 
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Fig. 4. An example of FSM network 

Rys. 4. Przyk"ad sieci automatów 

 

Presented FSM is flat; it has no deadlocks, because there are no 

local states satisfying (3). Modeling Petri net for this example 

(after reduction) is shown in Fig. 5. All places and transitions of 

the net correspond to local states and transitions of the network 

shown in Fig. 4, excluding MP1, which is a “macroplace” 

corresponding states p9 and p10 from Fig. 4. 
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Fig. 5. Modeling Petri net for example from Fig. 4 

Rys. 5. Sie& Petriego, modeluj$ca przyk"ad z Rys. 4 

 

In this net the siphon {p4, MP1} can be detected, which 

satisfies the condition from Affirmation 1. That means, that from 

any global state, in which the first FSM is in one of the states p1, 

p2, p3, p5, and the second FSM is in one of the states p6, p7, p8, no 

global state is reachable in which any of the states p4, p9, p10 is 

active. So, in this case a livelock is detected: neither of two 

automata can attain states p4 and p9, correspondingly, but at the 

same time neither of them can be deadlocked. 

6. Summary 

FSM networks are a simple and easy-to-understand formalism 

allowing to specify behavior of parallel logical controllers and of 

the discrete systems in general. It is used in many CAD systems. 

However, for a parallel system such as an FSM network, the 

complex verification tasks arise, which do not exist for the single 

FSMs and are related to checking correctness of interaction 

between the automata. 

There are two main groups of verification tasks for the parallel 

control systems: quantitative (first of all, whether the system 

meets time requirements) and qualitative (first of all, whether the 

system can be deadlocked – as a whole or its parts). Verification 

via simulation is not enough here, because it cannot guarantee full 

covering of any class of problems. So, formal verification is 

important. In this paper we concentrate on the second group of 

tasks and describe briefly the main original results obtained in this 

area during last years. 

For the one-level FSM networks we propose an analysis 

method, based on the simulation of the networks by Petri nets and 

finding in the modeling Petri nets the siphons of special kind. The 

method allows to detect all possibilities of global deadlocks and 

some possibilities of livelocks. Another proposed method, based 

on solving certain logical equations, detects all possible global and 

local deadlocks. 

Next, we consider more general case of FSM networks, where. 

hierarchy is added. For such case we propose another logical 

algebraic method, which detects all possible deadlocks of the 

system and – with the help of characteristic function – checks, 

whether the detected deadlocks are indeed reachable from the 

initial state(s) of the system.  
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