
KNWS’09  135

Maciej BORZĘCKI, Bartłomiej ŚWIERCZ, Andrzej NAPIERALSKI
DEPARTMENT OF MICROELECTRONICS AND COMPUTER SCIENCE, TECHNICAL UNIVERSITY OF ŁÓDŹ

SEU – zjawisko pomijane przez współczesne systemy operacyjne

mgr inŜ. Maciej BORZĘCKI

W 2006 ukończył studia magisterskie na specjalnosci

Telecommunications and Computer Science prowa-

dzonej przez Politechnikę Łódzką. Obronił z

wyróŜnieniem pracę magisterską pt. „Timing

Definition Language for POSIX environment”.

Aktualnie jest dotorantem prof. Andrzeja Napieral-

skiego w Katedrze Mikroelektroniki i Technik

Informatycznych Politechniki Łódzkiej, gdzie

wspólnie z dr Bartłomiejem Świerczem zajmuję się
odpornością na błędy w środowisku wieloprocesoro-

wym

e-mail: mborzecki@dmcs.pl

dr inŜ. Bartłomiej Świercz

Adiunkt w Katedrze Mikroelektroniki i Technik

Informatycznych Politechniki Łódzkiej oraz specjali-

sta od oprogramowania mobilnego i wbudowanego w

Teleca Poland. W 2008 roku obronił z wyróŜnieniem

doktorat ze specjalności systemy operacyjne czasu

rzeczywistego. Zainteresowania naukowe to systemy

operacyjne, systemy czasu rzeczywistego oraz

platformy mobilne i wbudowane.

e-mail: swierczu@dmcs.pl

Streszczenie

W zaleŜności od przeznaczenia systemu operacyjnego, projektanci skupia-

ją się na jednej z kluczowych cech: wydajności, determinizmie czasowym

lub niezawodności. Często projektanci systemów operacyjnych uwzględ-

niają kilka z przytoczonych cech jednocześnie, lecz zazwyczaj zapominają
o niekorzystnym wpływie otoczenia na sprzęt elektroniczny. Celem arty-

kułu jest omówienie wpływu jednego z czynników zewnętrznych, jakimi

są promieniowanie neutronowe lub kosmiczne, na pracę systemów opera-

cyjnych. Zamiarem autorów artykułu jest przedstawienie programowego

algroytmu ochrony systemów przed błędami oraz omówienie moŜliwości

implementacji algorytmu na przykładzie jądra systemu Linux.

Słowa kluczowe: SEU, odporność na błędy, systemy operacyjne, zarzą-
dzanie pamięcią

SEU - the phenomenon omitted by modern
operating systems

Abstract

Modern operating systems are expected to provide one of the key features:

performance, meeting time constraints or reliability. Sometimes, the

operating systems designers may embed a mix of the listed features, but

very few of them are aware of the adverse influence of the environment. In

this paper, neutron radiation and cosmic rays are considered as the external

factors. A software method of countering the environment induced errors

is presented, together with a discussion of the implementation possibilities

based on the Linux kernel.

Keywords: SEU, fault tolerance, operating system, memory management

1. Introduction

Interaction of neutron radiation on the electronics systems has

been known since 1954 when atomic weapon tests were per-

formed. The same influence on electronics is observed in cosmic

space due to cosmic radiation. Moreover, cosmic rays are able to

affect electronic devices on the ground level, what is the key of

given paper. The interaction phenomena, called Single Event Up-

set (SEU) [1] is shown on the Fig. 1. A neutron crossing through

Metal-Oxide-Semiconductor (MOS) transistor generates pairs of

electron-holes due to indirect ionization process [2]. If the neutron

looses enough energy, such that critical charge can be accumu-

 prof. Andrzej NAPIERALSKI

Kierownik Katedry Mikroelektroniki i Technik

Informatycznych na Politechnice Łódzkiej, którą
kieruje od momentu jej powstania. Dwukrotnie

wybierany na prorektora PŁ. Łączny dorobek

naukowy to ponad 820 pozycji w tym 4 ksiąŜki. Jest

promotorem 36 zakończonych rozpraw doktorskich.

Wieloetni członek Komitetu Elektroniki i Telekomu-

nikacji PAN oraz przewodniczący Sekcji Mikroelek-

troniki KEiT PAN.

e-mail: napier@dmcs.pl

lated in proximity to drain, transistor is switched on and as conse-

quence, element such as memory cell based on MOS transistors

changes its state to reverse one.

Described occurrence is observed logically, as a bit-flip in

memory and depending on the memory cell address, the effects

can be numerous: erroneous calculation result, incorrect jump

operation or even a critical error which may render the system

unusable.

Rys. 1. Struktura tranzystora MOS z zaznaczonym wpływem promieniowania

neutronowego

Fig. 1. The structure of MOS transistor affected by the neutron radiation

Radiation sensitivity of the semiconductors devices (such as

MOS transistors) is increasing as a result of technology progress

measured by physical transistor dimension. The increased suscep-

tibility of modern integrated circuits to radiation effects has been

noticed by industry leaders such as Cisco, who claim:

“All future designs that require highest availability must coun-

ter unavoidable SEUs.”

The paper is divided as follows. Section 2 provides introduction

to SEU tolerance algorithm implemented in software at the level

of operating system. Section 3, due to the nature of described

method, discusses the memory management subsystem of the

Linux kernel. The subsequent sections describe future work and

highlight main conclusions.

2. SEU Tolerant Operating System

Radiation hardening at hardware level is the most intuitive way

to protect sensitive electronic equipment against Single Event

Upset. Given the use of specialized hardware, little care needs to

be taken at the software level. However such level of convenience

is very costly. Hardware based methods are used commonly in

space systems but, due to the overall costs, this approach can not

be directly used in general purpose applications such as e-business

servers or in data centers. Should one want to use commercial-of-

the-shelf (COTS) components, software based methods are the

most viable solution [3]. Yet again, modification of each applica-

tion to support detection and correction in case of memory corrup-

tion may incur a high cost. There is one exception however.

Should the operating system, as being closer to the hardware and

136  KNWS’09

having a complete view of the memory, be modified to detect this

class of errors, other software such as regular applications, would

instantly gain a seamless and virtually cost-free protection. Re-

search conducted by authors demonstrated that it is possible to

design operating system capable of detecting and correcting SEUs

in transparent way to the running applications, with little runtime

overhead. A novel algorithm, called Interrupt Driven Immunity

(IDI), was derived. It is operation is briefly shown in Fig. 2. The

initial implementation was done in the sCore kernel and positively

verified in accelerator tunnels located in DESY research center in

Hamburg [4], where highly successful results were obtained. In

final experiment, the test board (Device Under Test – DUT) was

left for 14 days and 8 hours. During that experiment 12186 SEUs

ware observed and any one of noticed SEUs had an influence on

running applications.

The SEU tolerant algorithm utilizes the memory paging mecha-

nism provided by Memory Management Unit (MMU) – insepara-

ble part of modern processors. The paging mechanism allows the

operating system to implements virtual memory, resulting in

better, overall memory utilization [5]. The IDI is based on the idea

of memory redundancy. However, a number of extra steps are

required during operating system startup. The memory pages used

by the operating system are copied into two redundant memory

regions. Each time, a new task or a new memory request is ser-

viced a copy needs to be done as well. Each page has a number of

status bits, 'present' bit being one of them. Zero value means that

the page might have swapped out (possibly to secondary storage).

Program trying to access the contents of such page will cause the

MMU to generate a page fault (hardware interrupt). IDI utilizes

this behavior for providing SEU memory protection as show in

Fig. 2.

Rys. 2. Schemat blokowy algorytmu IDI

Fig. 2. The block scheme of IDI algorithm

Each page, upon being released is marked as 'not present'. The

next access will cause a page fault, what triggers IDI to perform

memory comparison with both redundant copies. In case of no

errors, the page is marked as present and the program may con-

tinue. Should errors occur, the triple voting mechanism would

determine what is the page contains the correct data and correct

the error by means of copy operation. When program is preempted

by system scheduler, ‘present’ bit of all pages used during one

system epoch is cleared and set as ‘not present’. The total over-

head of IDI algorithm is less than 20% in comparing to the ana-

logues system without IDI and SEU protection.

The use if IDI algorithm adds very little runtime overhead, thus

no significant degradation of performance is observed. The fault-

ing memory page is checked only once during given scheduler

period, which can usually be controlled at the level of configura-

tion of given operating system.

3. Overview of Linux memory management

This section briefly describes the topic of memory management

in the Linux kernel referring to the IA-32 architecture [6].

Given the context of this paper, the particular method of realiza-

tion of memory protection as described in previous section, the

main goal of analysis presented here, is to evaluate the suitability

of Linux kernel as a target platform for porting the aforementioned

method to.

For this purpose, the most recent (as of the time this paper is

written) release of Linux kernel is used, namely 2.6.28 available

from [7]. The Linux kernel supports a significant number of dif-

ferent architectures, thus for simplification, IA-32 architecture is

further assumed to be used. Although only one processor architec-

ture is considered, the kernel code is highly flexible, and only

architecture specific changes will be required when moving to a

new platform.

Keeping in mind the relatively scarce documentation, the great

deal of information can be extracted by directly browsing the code

of the kernel.

IA-32 provides two main mechanisms for memory manage-

ment: paging and segmentation [8]. The Linux kernel makes very

limited use of segmentation, mainly due to portability reasons.

The paging mechanism, being widely available among different

processor architectures, is the prevalent mechanism to deliver

virtual memory and swapping functionality

The Linux kernel needs to support architectures of varying ad-

dress width. For the best compromise between portability and

efficiency, the internal paging mechanism can have up to 4 levels.

The address structure is split into parts as show in Fig. 3.

Rys. 3. Prezentacja adresu pamięci w jądrze Linux

Fig. 3. Memory address representation in the Linux kernel

The simplest case, that the kernel can be configured to use is a

2-level paging, which mirrors the IA-32 address representation.

This case is presented in Fig. 4.

Rys. 4. Najprostszy przypadek reprezentacji adresu na architekturze IA-32

Fig. 4. Simplest case of address representation on IA-32 architecture

The kernel does not directly use the processor's data structures,

but rather through a number of convenience macros, required

manipulation is performed.

Each page is represented by corresponding data structure named

struct page. It's size, although in general architecture depend-

ent, on IA-32 is often 4 kB but also could be 2 and 4 MB [8].

KNWS’09  137

The Linux memory manager splits the available physical mem-

ory into zones. Each zone acts as a memory pool, out of which

new pages can be retrieved when needed. Zone contains a per-

CPU memory map with a linked list of page descriptors, each

corresponding to a chunk of memory. The top level structure,

pg_data_t, and zone descriptors are always resident in memory

at a well known address, thus they can be easily localized from

within the kernel.

 The general relation between physical memory descriptor

structures is shown in Fig. 5.

Rys. 5. Podzial pamięci fizycznej w jądrze Linux

Fig. 5. The fragmentation of physical memory in the Linux kernel

The IDI assumes that there are a number of redundant copies of

particular page. Layered approach to memory management in the

Linux kernel and the isolation of zones from the page management

code executed in memory handling routines during the regular

flow, may give an advantage when implementing redundant mem-

ory area mappings as hooks to zone handling code.

The memory of each task needs to be protected from SEU, thus

the mechanism of correlating virtual memory mapping with given

process needs to be investigated. The kernel assigns and tracks the

memory of a running process by use of mm_struct data structure,

referenced from task_struct. The mm_stuct contains a refer-

ence to a linked list of virtual memory areas, named

vm_area_struct, that are used by given process. The relations

between these structures are shown in Fig 6.

Linux, similar to other Unix-like kernels, provides the user with

ability to map a file into task's address space, thus virtual memory

mapping area may correspond to the data present on a permanent

storage.

Rys. 6. Struktury przypisujące obszary pamięci wirtualnej do procesu

Fig. 6. Data structures used for assignment of virtual memory areas to a process

During the lifetime of a process, at a given instant in time, there

may be more virtual memory areas assigned to it than the number

of pages that are needed to cover the complete memory range.

This is caused by mechanisms such as delayed allocation or copy-

on-write [9], which allow for improvements in operating system

performance. In case of an access to the memory that would have

been in such page, a page fault is generated by the host processor.

Recall, that for the successful implementation of IDI, page fault

handling is essential. Thus it is vital to place the implementation

hooks carefully, so that the portability is not lost, just in case a

need for supporting more architecture appears and performance of

Linux kernel is still sufficient.

The actual code that performs handling of a page fault event is

architecture independent and enclosed in two main functions:

handle_mm_fault and handle_pte_fault. The action pre-

formed by page fault handling code is dependent on the context

and the state of virtual memory mappings for given task. IDI

protection hooks added in this code (handle_pte_fault in

particular) would bring the benefit of memory protection of a

significant number of architectures.

Having in mind the general idea behind the operation of an IDI

algorithm, one needs to address the last problem, ie. marking the

pages as not present upon switching the task this can be easily

addressed in the Linux scheduler. The relevant data structures

related to memory assigned to given process were described in

previous paragraphs.

4. Future Work

The authors plan to perform an initial implementation of IDI

algorithm in the Linux kernel, with the idea of concentrating on

IA-32 architecture. Moreover it will be interesting to evaluate the

suit-ability of other operating system kernels such as K42 [10].

The modified Linux kernel is planed to be tested using software

emulator such as Bochs and using embedded PC placed inside one

of accelerators tunnels located in DESY.

The IDI algorithm was designed to protect systems running on

COTS computers with single processor. Authors would like to

evaluate the performance of IDI in multiprocessor systems as well

as focus on developing algorithms that combine both memory and

processor redundancy. The main architectures to be evaluated are

Symmetric Multiprocessing (SMP) and Massively Parallel Proces-

sors (MPP).

5. Conclusion
As presented in this paper, the problem of radiation induced er-

rors becomes more significant with the ongoing race for producing

smaller, low-voltage processors. It appears that the easiest way to

provide a transparent protection to user applications is to imple-

ment algorithms like IDI at the level of an operating system,

which in fact acts as a wrapper, isolating the actual application

form the hardware.

Algorithms like IDI are a viable solution to memory protection,

their implementation cost may vary depending on platform, how-

ever the only requirement is that the MMU is available, what is a

common case for contemporary processors. Basing on the exam-

ple of Linux kernel, porting IDI to other operating systems is not

overly complicated, thus it will be possible to deliver a decent

level of radiation protection to a large user base.

6. Literatura
[1] L. Adams, A. Holmes-Siedle: Handbook of Radiation Effects, Oxford

University Press, 2004

[2] Actel: Effects of neutrons on programmable logic, White Paper, 2002

[3] D. Makowski, B. Świercz, M. Grecki, and A. Napieralski. Projekto-

wanie systemów niewraŜliwych na wpływ promieniowania na potrze-

by akceleratora X-FEL. Elektronika - Konstrukcje, Technologie, Za-

stosowania, 2005

[4] B. Świercz: The Algorithms for Protection of Operating Systems with

Special Emphasis on the Neutron Radiation, Ph.D dissertation, 2008

[5] V. Abrossimov, M. Rozier, M. Shapiro: Generic Virtual Memory

Management for Operating System Kernels, SOSP, ACM, 1989

[6] M. Gorman: Understanding the Linux Virtual Memory Manager,

Prentice Hall, 2004

[7] Linux kernel source code: http://www.kernel.org

[8] Intel® 64 and IA-32 Architectures Software Developer's Manual

Volume 3B: System Programming Guide

[9] M. Acetta, Mach: A New Kernel Foundation For UNIX Development,

USENIX, 1986

[10] J. Appavoo, M. Auslander and all: K42 Overview, Kernel white

paper, http://www.research.ibm.com/K42/white-papers/Overview.pdf

Artykuł recenzowany

