
KNWS’09    155 
 

Monika WIŚNIEWSKA, Remigiusz WIŚNIEWSKI, Marian ADAMSKI 
UNIWERSYTET ZIELONOGÓRSKI 

 

Reduction of the Microinstruction Length in the designing  
process of Microprogrammed Controllers 
 
 

mgr inŜ. Monika WIŚNIEWSKA 

 

Ukończyła studia na Wydziale Elektrycznym 

Uniwersytetu Zielonogórskiego, o specjalności 

InŜynieria Komputerowa. Obroniła pracę magisterską  

w 2003 r.  

 

Od 2003 r. jest słuchaczem studiów doktoranckich, 

specjalność informatyka. Jej zainteresowania naukowe 

to analiza systemów dyskretnych z wykorzystaniem 

hipergrafów. 

 

e-mail: M.Wisniewska@weit.uz.zgora.pl 
 

 

prof. dr hab. inŜ. Marian ADAMSKI 

 

Profesor zwyczajny, dyrektor Instytutu Informatyki  

i Elektroniki Uniwersytetu Zielonogórskiego. 

Zainteresowania badawcze obejmują projektowanie 

systemów cyfrowych realizowanych w postaci 

mikrosystemów cyfrowych oraz formalnych metod 

programowania sterowników logicznych. Członek 

IEEE, IEE, ACM, PTI oraz PTETiS. 
 

e-mail: M.Adamski@iie.uz.zgora.pl 

 

 

 

Abstract  
 

The problem of the microinstruction length reduction is a very important 
part of the designing process of the microprogrammed controllers. Such a 
problem is NP-hard, therefore many various algorithms have been devel-
oped. Almost all proposed ideas are based on the traditional graph theory 
and its modifications (heuristics, stochastic, etc.).  
In the paper, we propose the method of microinstruction length reduction, 
where the hypergraph theory is applied. A hypergraph permits to store and 
reduce the information about the compatibility classes in comparison with 
traditional graphs. The microinstruction length reduction is reached thanks 
to the calculation of the dual hypergraph and computation of its minimum 
transversal (minimal vertices cover).  

All steps that are required in order to perform the microinstruction length 
reduction of microprogrammed controllers will be shown. The proposed 
method will be illustrated by way of example and compared with the 
traditional solution, based on the graph theory. 
 
Keywords: hypergraph, compatibility class, microprogrammed controller 
(control unit), microoperation, microinstruction, reduction of the microin-
struction length. 

 

Redukcja rozmiaru mikroinstrukcji w procesie 
projektowania sterowników mikroprogramo-
wanych 

 

 
Streszczenie 

 

Problem redukcji rozmiaru mikroinstrukcji jest waŜnym etapem w proce-
sie projektowania sterowników mikroprogramowanych. Jest to problem 
NP-trudny, dlatego teŜ powstało wiele metod poszukujących rozwiązania. 
Zdecydowana większość zaproponowanych algorytmów bazuje na trady-
cyjnej teorii grafów.  
W artykule zaprezentowano nowatorską metodę redukcji rozmiaru mikro-
instrukcji sterowników mikroprogramowanych, częściowo opierającą się 
na rozwiązaniach klasycznych. Metoda bazuje na wykorzystaniu teorii 
hipergrafów do wyznaczenia klas kompatybilności dla poszczególnych 
mikrooperacji. Mikrooperacje, które są parami kompatybilne mogą zostać 
zakodowane z wykorzystaniem mniejszej liczby bitów. Dzięki temu 
rozmiar pamięci układu mikroprogramowanego moŜe zostać w znacznym 
stopniu zmniejszony. Zaproponowane rozwiązanie bazuje na wyznaczeniu 
hipergrafu dualnego, a następnie znalezieniu jego minimalnej transwersali 
(minimalnego pokrycia wierzchołkowego). 

 

dr inŜ. Remigiusz WIŚNIEWSKI 

 

Dr inŜ. Remigiusz Wiśniewski jest absolwentem 

Uniwersytetu Zielonogórskiego (2003). Ukończył 

studia o specjalności InŜynieria Komputerowa.  

W roku 2000 odbył przemysłową praktykę studencką 

w firmie Aldec Inc. w Stanach Zjednoczonych. 

Od roku 2003 pracuje jako asystent na Wydziale 

Elektrotechniki, Informatyki i Telekomunikacji 

Uniwersytetu Zielonogórskiego. 

 

e-mail: R.Wisniewski@iie.uz.zgora.pl 
 

 
Idea metody zostanie zilustrowana przykładem. Pokazane zostaną wszyst-
kie kroki, jakie są niezbędne do zaprojektowania zmodyfikowanego ukła-
du pamięci. Zaproponowana metoda zostanie porównana z rozwiązaniami 
klasycznymi, bazującymi na teorii grafów. 

 

Słowa kluczowe: hipergraf, klasa kompatybilności, sterownik (układ) 

mikroprogramowany, mikrooperacja, mikroinstrukcja, redukcja rozmiaru 

pamięci. 

 

1. Introduction 
 

A control unit is one of the most important parts of any digital 

system [1,2,3,4,5]. It can be found in almost all devices that con-

tain microelectronics; such as computers (central processor unit, 

CPU), cellular phones, cars and even remote controllers. The 

control unit is responsible for managing all modules of the de-

signed system - it sends adequate microinstructions that should be 

executed [6].  

One of the realization of the control unit is a microprogrammed 

controller (also named as microprogrammed control unit) where 

the device is decomposed into two main parts. The first is respon-

sible for addressing microinstructions that are kept in the control 

memory. The role of the second part is to hold and generate ade-

quate microinstructions. Typically, the control memory is imple-

mented as a ROM or RAM memory.  

Many controllers (especially realized as a Complex Instruction 

Set Computers, CISC) have a long microinstruction length [7]. It 

may cause serious problems in the prototyping process. If the 

design is realized as a System-On-Programmable-Chip (SoPC), 

the memory can be implemented with dedicated memory blocks of 

Field Programmable Gate Arrays (FPGA). However, if the micro-

instruction length exceeds the length of the dedicated memory 

block offered by an FPGA, the controller’s memory ought to be 

decomposed. In case of controllers implemented as a System-On-

Chip (SoC), the memory is treated as an independent module. It 

means that each additional bit in the microinstruction width in-

creases the total cost of the memory and the whole device. There-

fore, the microinstruction length reduction is a very important part 

of the designing process of the microprogrammed controllers in  

a digital system.  

 

2. Problem formulation and current state  
of the art 

 

The idea of the microinstruction length reduction is basically 

based on the special encoding of microoperations. Two microop-

erations may be encoded together, if they are not executed concur-

rently, at the same time. It means that they are pairwise compati-

ble. Similarily, two microoperations are incompatible, if they are 

executed at the same time.  

The problem of the reduction of the microinstruction length is 

NP-hard [8]. Almost all methods presented in previous works are 

based on the graph theory [9,10,11]. Here proper microoperations 



KNWS’09    156 
 

are represented by vertices while their compatibility is shown by 

an edge (if there is an edge between two vertices, it means that 

two microoperations are compatible). Next, compatibility classes 

are formed. All microoperations that are pairwise compatible are 

grouped into classes (it is obvious that compatibility classes corre-

spond to cliques in a graph). The microinstruction length minimi-

zation problem is equivalent to finding the partition of the com-

patibility graph into disjoint compatibility classes, where the 

length of a new (encoded) word is minimal. In  practice it means, 

that the minimum covering of the graph ought to be calculated. 

Since the graph covering problem is NP-hard [7,8], there were 

many various ideas presented in previous works. Most of algo-

rithms are based on the finding and analyzing all maximal sub-

graphs. Such a technique is known as the maximal clique problem 

[10,11,12]. 

In this paper we propose a new approach of the microinstruction 

length reduction. The main idea is an application of the hyper-

graph to represent the relations between compatibility classes.  

A hypergraph is generalization of the graph. Its edges can connect 

any number of vertices [13,14]. Therefore, a hypergraph is much 

more efficient than any classic undirected graph [1,13,14,15]. Its 

application permits to store and reduce information about com-

patibility classes and their relations needed for further synthesis. 

Moreover, the current analysis methods of hypergraphs are much 

faster compared with traditional solutions.  

 

3. Main definitions 
 

A hypergraph is generalization of the graph. Its edges - known 

as hyperedges - can connect any number of vertices [1,13,14], 

while classic graph can connect only two vertices. Formally,  

a hypergraph is a pair (V,E) where V={v1,…,vX} is a set of verti-

ces, and E={e1,…,eM} is a set of edges. Hyperedges are arbitrary 

sets of vertices, and can therefore contain an arbitrary number of 

vertices. Figure 1 shows the graphical representation of the hyper-

graph. One of the most popular representations of hypergraph is 

incidence matrix where vertices are represented by columns and 

hyperedges by rows of the matrix. 

 
 

E5 E3 
 

E1 a b 

c 

E4 

e 

d

E2 
 

E1 a b 

c 

E4 

e 

d

E2 
 

 
 

Fig. 1.  Hypergraph H and its minimum covering   

Rys. 1.  Hipergraf H i jego minimalne pokrycie  

 

Hypergraph H* is called the dual hypergraph of H, if its verti-

ces correspond to edges of H, and respectively its edges corre-

spond to vertices of H. The incidence matrix of H* is the trans-

pose of the incidence matrix of H, and similarly (H*)*=H [14]. 

A transversal (hitting set, vertices cover) of a hypergraph H is 

defined as a set of vertices T⊂V, so that each hyperedge of H is 

incident with at least one vertex in T: 

 

  T ∩ ei ≠ ∅  (i = 1, …, m). (1) 

 

A minimum transversal (transversal number) of the hypergraph 

H is defined to be the minimum number of vertices in the trans-

versal. It is represented as: 

 

  τ(H) = min | T |. (2) 

 

There are several methods to compute the minimum transversal 

of a hypergraph. It can be achieved through the reduction of the 

incidence matrix (also known as exact covering), via heuristic 

methods (i.e. backtracing algorithms) or stochastic solutions (like 

greedy method) [1,13,15,19]. 

An edge cover (or just cover) of a hypergraph H is defined as 

the C set of edges, so that each vertex is incident with at least one 

edge in C. A minimum cover of a hypergraph H is defined to be 

the minimum number of edges in the C set. An exemplary cover-

ing of the hypergraph H is shown in the Fig. 1. 

Let’s point out, that the minimum transversal problem refers to 

the minimum covering problem (and vice versa). The minimum 

cover of a hypergraph H can be solved by calculation of the mini-

mum transversal τ(H*) of a dual hypergraph H*. Moreover, the 

minimum transversal of τ(H) can be achieved via computation of 

the minimum cover of the dual hypergraph H*.  

A microoperation yn is an action (output) generated by a control 

unit, that is executed by a driven object (also called as a data-

path). The set (collection) Y = {y1, ..., yN} of microoperations that 

are executed at the same time is defined as microinstruction (also 

named as word or microword). In the microprogrammed control-

lers, microinstructions are organized into memories and kept in the 

control memory [16,17,18]. 

 

4. Main idea of the proposed method 
 

The reduction of the microinstruction length can be divided into 

the following steps: 

1. Formation of the CC set of compatibility classes for all 

microoperations kept in the control memory. As it was al-

ready mentioned, two microoperations are compatible if they 

are not executed concurrently (at the same of microinstruc-

tion). At this stage, all possible compability classes are calcu-

lated and represented as the set CC = {C1,…,CK}. 

2. Determination of the cost (weight) of each compatibility 

class. A cost (weight) of the compability class Ci is equal to 

the minimum number of bits that are required for its encod-

ing. Each compatibility class is encoded with the natural bi-

nary code. The weight of the compability class Ci can be eas-

ily found as: 

 

  Li =  log2(|Ci|+1). (3) 

 

An additional bit is necessary for representation of the  

no-operational state (where none of microoperations in the Ci 

set are to be executed). 

3. Formation of the H compatibility hypergraph. The hyper-

graph represents relations between compability classes and 

microoperations. The incidence matrix A of the hypergraph H 

may contain the following values [19]: 

 

 
ompability

tyncompabiliij
c1
i0

⇒
⇒=  {A , (4) 

 

where i = {1, …, K} represents the i-th compability class, and  

j = {1, …, N} means the j-th microoperation. If the filed Aij of 

the incidence matrix contains 1, it means that j-th microop-

eration belongs to the i-th compability class. 

4. Transformation of the H, to the dual H* hypergraph. At this 

step the dual H* hypergraph is formed. Formally it means the 

transposition of the incidence matrix A to the matrix A*. 

5. Computation of the minimum transversals τ(H*) of the dual 

H* hypergraph. Let’s point out that this stage may be solved 

with application of any algorithm of transversals recognition. 

However, due to the comparison with graph theory, this pa-

per deals with the basic reduction algorithm. Such a solution 

finds exact vertices covers and it is based on a consecutive 

reduction of vertices and edges from the hypergraph. The al-

gorithm is perfectly described in [1]. 



KNWS’09    157 
 

6. Calculation of the total cost of each minimum transversal. At 

this stage for each minimum transversal τs ∈ τ the total cov-

ering cost is calculated. This value can be determined as: 

 

 ∑= iLsW  (i=1, …, I), (5) 

 

where Ws is a total weight (cost) of a τs transversal and it is 

equal to a Li sum of weights of all I compability classes that 

belong to the  τs transversal. The transversal τMin with the 

lowest Ws weight is selected for the further analysis. 

7. Encoding of compatibility classes that belong to the τMin 

transversal with the lowest Ws weight. The number of re-

quired bits is equal to Ws (Q={q1, …, qWs}). The encoding 

style is not important, however in this paper we will use natu-

ral binary code.  

8. Formation of the new control memory content. The content of 

the control memory is now determined as a concatenation of  

codes achieved in the previous step (each new microinstruc-

tion is formed as a concatenation of Q codes of encoded 

compability classes). The total width of new microinstruction 

is equal to Ws, thus the reduction of the control memory can 

be calculated as: 

 

 %1001 1
⋅





















−=

∑
=

N

L

t

S

i
i

, (6) 

 

where t means the (%) gain of the control memory volume 

achieved by the microinstruction length reduction; |S|- is the 

number of compability classes that belongs to the  τMin trans-

versal; Li- is the weight of the i-th class that belongs to the 

transversal τMin; N- is the original size of each microinstruc-

tion (number of microoperations) before reduction. 

 

5. Exemplary application of the proposed 
method 

 

The idea of microinstruction length reduction based on the hyper-

graph theory will be illustrated by way of example. Let’s assume 

the hypothetical content control memory with N=6 microopera-

tions Y = {y1, …, y6}, that are formed into four microinstructions  

µ = {µ1, …, µ4}. The total volume of the control memory is equal 

to V = 4*6 = 24 (Tab. 1).   

 
Tab. 1.  The initial content of the control memory 

Tab. 1.  Pierwotna zawartość pamięci sterownika 

 

Microoperation Micro-

instruction y1 y2 y3 y4 y5 y6 

µ1 0 1 0 0 0 1 

µ2 0 1 0 1 0 0 

µ3 1 0 0 0 1 0 

µ4 0 0 1 0 1 0 
 

According to the algorithm presented in the previous section, at 

the beginning the set of compability classes should be formed. For 

the presented example there are K = 4 compability classes 

C = {C1, ..., C4}, where: C1 ={y1, y2, y3}, C2 ={y1, y3, y4, y6},  

C3 ={y2, y5}, C4={y4, y5, y6}. Next, the weight of each compability 

class is calculated. The class C1 contains |C1| =3 elements, there-

fore its weight will be equal to L1=log2(|C1|+1)=log2(3+1)=2.  

Similarily weights for all remaining classes are determined, and 

finally L2= 3; L3 = 2; L4 = 2. 

At the third stage, the compability H1 hypergraph is formed. Such 

a hypergraph will contain |V| = 6 vertices, that refer to microopera-

tions (V={y1, …, y6}) and |E| = 4 edges, that correspond to proper 

compability classes (E={C1, …, C4}). The compability hypergraph 

and its incidence A1 matrix are shown in the Fig. 2. 

 
 

C2 

C3 

C4 

2 

3 

4 

5 

6 

1 C1 

A1 = 

1 1 1 0 0 0 
1 0 1 1 0 1 
0 1 0 0 1 0 
0 0 0 1 1 1 

1 2 3 4 5 6 
C1 
C2 
C3 
C4 

 
 

Fig. 2.  The Compability H1 hypergraph and its incidence A1 matrix 

Rys. 2.  Hipergraf kompatybilności H1 i jego macierz incydencji A1 

 

Next, the dual H1* hypergraph is formed. Here the set of vertices 

of H1 is transformed into the set of edges of H1*, and respectively 

edges of H1 are transformed to vertices of H1*. The dual H1* 

hypergraph and its incidence matrix A1* are presented in the  

Fig. 3. 

 
 

1 1 0 0 
1 0 1 0 
1 1 0 0 
0 1 0 1 
0 0 1 1 
0 1 0 1 

2 

4 3 

1 

y3 

A1* = 

1 2 3 4 
y1 
y2 
y3 
y4 

y5 
y6 
 

y1 

y2 

y5 

y4 y6 

 
 

Fig. 3.  The Dual H1* hypergraph and its incidence A1* matrix 

Rys. 3.  Hipergraf kompatybilności H1* i jego macierz incydencji A1* 

 

There are two minimum transversals of the dual H* hypergraph. 

Both contain two vertices, the first one consists of τ1={1,4}, while 

the second one includes τ2={2,3}. Similarily, it means that the 

initial H1 hypergraph can be covered in two ways: via hyperedges 

C1 and C4 or with C2 and C3. The minimum covering is shown in 

the Fig. 4.  

 
 

C4 

2 

3 

4 

5 

6 

1 C1 
C2 

C3 

2 

3 

4 

5 

6 

1 

 
 

Fig. 4.  Two minimum coverings of the H1 hypergraph  

Rys. 4.  Dwa pokrycia minimalne hipergrafu H1 

 

At the next stage the total cost of each minimum transversal is 

calculated. For the presented example, the total weight of the τ1 

transversal is equal to W1 = L1 + L4 = 2+2 = 4, while the total cost 

of the τ2 transversal is calculated as W2 = L2 + L3 = 3+2 = 5. 

Therefore, for the further analysis the τ1 transversal is selected, 

because its total weight is the lowest. Next, all compability classes 

that belong to the τ1 transversal are encoded. There are W1=4 bits 

required, where Q={q1, …, q4}. In the presented example classes 

C1 and C4 are encoded with natural binary code (consecutive 

values are encoded in NB-code, the “00” code is reserved for the 

non-operational microinstruction). The encoding style is illus-

trated in the Tab. 2. 

 
 



KNWS’09    158 
 

Tab. 2.  The initial content of the control memory 

Tab. 2.  Pierwotna zawartość pamięci sterownika 

Class C1 Code Class C4 Code 

y1 y2 y3 Q1 q2 y4 y5 y6 q3 q4 
K 

0 1 0 0 1 0 0 1 0 1 1 

0 1 0 0 1 1 0 0 1 0 2 

1 0 0 1 0 0 1 0 1 1 3 

0 0 1 1 1 0 1 0 1 1 4 

 

Finally, new content of the control memory is formed. New micro-

instructions are determined as a concatenation of codes achieved 

in the previous step (each new microinstruction is formed as a 

concatenation of Q codes of the encoded compability classes). The 

new content of the control memory is shown in the Tab. 3. 

 
Tab. 3.  The content of the control memory after encoding 

Tab. 3.  Zawartość pamięci sterownika po zakodowaniu 

Microoperation 
Micro-instruction 

q1 q2 q3 q4 

µ1 0 1 0 1 

µ2 0 1 1 0 

µ3 1 0 1 1 

µ4 1 1 1 1 

 

The width of the new (encoded) microinstruction is equal to W1=4. 

The total volume of the reduced memory is equal to V*= 4*4 = 16. 

It means that the initial volume of the control memory was re-

duced by t = 33%. 

 

6. Results of investigations 
 

The proposed method of the microinstruction length reduction 

was compared with the traditional solution, based on the graph 

theory. To achieve the most comparable results between graphs 

and hypergraphs, in both cases exact covering algorithms pre-

sented in [1] and [12] were used. There were totally 1000 random 

bench-marks (contents of control memory) prepared. For each 

memory, the microinstruction length reduction based on the graph 

and hypergraph theory was performed. The initial benchmarks 

were divided into groups depending on the numbers of microope-

rations and microinstructions. The average results achieved during 

investigations are shown in the Tab. 4. The table includes the 

following values: the number of microoperations, average number 

of microinstructions, average time achieved during execution of 

the algorithm based on the hypergraph and graph theories. 

 
Tab. 4.  The results of investigations 

Tab. 4.  Wyniki badań 

Average time [s] No. of micro-

operations 

No. of micro-

instructions hypergraph graph 

10 55 0,009 0,003 

20 55 0,011 0,020 

30 55 0,019 0,044 

40 55 0,017 0,092 

50 55 0,022 0,159 

60 55 0,025 0,256 

70 55 0,030 0,386 

80 55 0,033 0,540 

90 55 0,039 0,736 

100 90 0,060 1,111 

120 150 0,128 2,219 

140 150 0,141 3,555 

160 150 0,148 5,094 

180 150 0,164 7,115 

200 150 0,193 9,828 

 

The performed investigations showed that application of algo-

rithms based on hypergraphs highly speeds-up the process of the 

microinstruction length reduction in comparison with traditional 

graphs. Only in case of small memories, where the number of 

microoperations does not exceed 10, the application of graphs 

benefited better results. However in all other cases, methods based 

on the hypergraph theory were much faster. It should be pointed 

out that increasing the number of microoperations effects in better 

results of hypergraphs algorithms. In case of memories that con-

tain 200 microoperations and 150 microinstructions, hypergraphs 

were on average over 50 times faster than adequate graphs. 

 

7. Summary 
 

In the paper a new method of the microinstruction length reduc-

tion in the designing process of Microprogrammed Controllers 

was proposed. The algorithm is based on the representation of the 

compability classes with hypergraphs. The minimum covering is 

achieved via computation of the minimum transversal of the hy-

pergraph. The performed investigations proved the effectiveness 

of the proposed method. The process of the microinstruction 

length reduction is much faster (even more than 50 times) in com-

parison with solutions based on the traditional graph theory. 

 

8. References 
 
[1] G. De Micheli: Synthesis and Optimization of Digital Circuits. Mc-

GrawHill, 1994. 

[2] A. Clements: The principles of computer hardware. Oxford University 

Press, New Jersey, 2000. 

[3] T. Łuba: Synteza układów cyfrowych. Praca zbiorowa pod redakcją 

prof. Tadeusza Łuby, WKŁ, Warszawa, 2003. 

[4] M. Bolton: Digital Systems Design with Programmable Logic. Addi-

son-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1990. 

[5] D. Burskey: Embedded Logic and Memory Find Home in FPGA. 

Electronic Design, No. 14, pp. 43-56 1999. 

[6] D. Gajski: Principles of Digital Design, Prentice Hall, New Jersy1997. 

[7] R. Puri, J. Gu: Microword Length Minimization in Microprogrammed 

Controller Synthesis. IEEE Trans. on Computer-Aided Design, 1993. 

[8] E. L. Robertson: Microcode bit optimization is NP-complete. IEEE 

Trans. Comput., vol. C-28, pp. 316–319, Apr. 1979. 

[9] S. Dasgupta: The Organization of Microprogram Stores. Computing 

Surveys, 1979. 

[10] S. K. Hong, I. C. Park, C. M. Kyung: An O(n3logn) Heuristic for 

Microcode Bit Optimization. In ICCAD-90, pp. 180-183, 1990. 

[11] J. Lam, J. M. Delosme. Simulated Annealing: A Fast Heuristic for 

Partitioning VLSI Networks. In ICCAD-88, pp. 510-513, 1988. 

[12] A. V. Aho, J. E. Hopcroft, J. D. Ullman: The Design and Analysis of 

Computer Algorithms. Addison-Wesley, Reading, MA, 1974. 

[13] T. Eiter, G. Gottlob: Identifying the Minimal Transversals of a Hyper-

graph and Related Problems. SIAM Journal on Computing Volume 

24, Issue 6 (December 1995) pp. 1278 - 1304   Year of Publica-

tion: 1995. 

[14] C. Berge: Graphs and Hypergraph. North-Hols.r Mathematical Li-

brary, Amsterdam 1976. 

[15] T. Eiter, G. Gottlob: Hypergraph transversal computation and related 

problems in logic and AI. LNCS, pp. 549—564, Springer, 2002. 

[16] H.H. Hoos, T. Stutzle: Local Search Algorithms: An Empirical 

Evaluation. Journal of Automated, pp. 421-481, 2000. 

[17] M. V. Wilkes: The best way to design an automatic calculating ma-

chine. Manchester University inaugural conference, Manchester, Eng-

land, 1951. 

[18] M. Molski: Modułowe i mikroprogramowalne układy cyfrowe. WKŁ, 

Warszawa, 1986. 

[19] P. Sapiecha, Algorytmy syntezy funkcji i relacji boolowskich w 

aspekcie metod reprezentacji i kompresji danych. PW, Wydział Elek-

troniki i Technik Informacyjnych, Warszawa, 1998. 

Artykuł recenzowany 

 


