KNWS 2010 15

Gaps in design and tests
of dependable embedded systems

Iwona Grobelna, Michat Grobelny

Abstract: The paper focuses on gaps in design and teBherefore early discovery of errors may save timeney

technology for dependable embedded systems. Pessibhd even people lives.

gaps in design may influence systeml][(cie and as Test phase is also important as it may detect some

the result final product may notelJ (11 all requirements errors which occurred in earlier phases. Testscaite

or some of desired properties. Test phase is alpoitant expensive for companies, but no one should evenk thi

as it may indicate even subtle errors which occlire about not performing them. The fast technology prsg

previous phases. The article presents possibleéi@atuto enforces reduction of time and resources spentests.t

improve the design and test technology. Even though in the minimum scenario the most ingurt

Keywords: design, tests, dependable embedded systen(%g:se?.ﬁhomd bfe covereld. . in desi

model checking, temporal logic e most frequently occurring gaps in design astl te
phases in development of dependable embedded s/stem
are presented in the next sections. Additionalgreéhare

e-] INTRODUCTION proposed solutions to solve some of the probleaiéng

Dependable embedded systems [1] are currently used trol over one of the possible gaps in design tasd

even in the today-life domains, like in cars, pBneains, phase.
etc. The desired properties of such systems aré hi%
reliability, availability, maintainability, safety and 2. GAPS IN DESIGN

e et Possile gaps i design phase whih may have an
Prop y P g infuence on the dependable embedded system

others, but in some degree all of these mentlonz? [0 0 Ocie are connected with human beings. Therefore

properties should be ensured. Dependable embed L bhase may be improved by changing organizakion
systems are also intensive researched by SCiemié%pects of a company
communities, like byThe German Indonesian Tsunami When starting wi.th a new project the requirements

Early Warning Systeni8]. The project has to manage 1ve to be fully formulated. Unfortunately it magpgpen

severa_l subsyst(_ems_ and has therefore high reqUMSMEy ot the requirements will not be complete. Thiymause
regarding the reliability.

. that the system will operate correctly due to the
The development of a system involves couple ste% uirements but it will not be fully reliable aagailable
which must occur one after the other (Fig. 1). Phecess q y '

: X . because some of the important requirements may have
starts W't.h design phase and ends with tests. pbises been omitted. Another problem connected with the
are very important.

requirements is the situation when informal spedifi
. _»_»_» _»@ requirements are ambiguous. Depending on thg gatect
v of system designers, they may be correctly or irexly
Customer Analyst Documentation Designer Tester iNterpreted. The second case can have an enormous
influence on dependable embedded systeeti [l cie.
The requirements list should therefore be compéetd
The design phase should end with a fully completimclude both functional and non-functional requissms
and correct design. Possible errors in this phasg m(addressing the quality, performance, security,) eted be
influence oncoming phases and the whole venture apdsy to understand for all members of a team.
generate enormous costs. The later the errors bill Similar problems may occur by embedded system
detected, the faster the costs of repairing these. ri specification. It may happen that it will be incdete. It
Additional fact which has to be taken into accounmay also happen that it will be incorrect. Follogiian
especially by dependable embedded systems is tikgt tincorrect specification, there will be an incorrect
are supposed to be fully reliable, available, safé secure implementation and finally there may be an incdrrec
all the time. Even a tiny error in design phase mlagnge product! And either the whole development proceds w
the total systemlel[1[1[cie and may have tragic effects,start again from the beginning (which causes redonhd
i.e. in transport domain (like a plane crash) ityroause a costs) or the final product will be released whatyrhave
catastrophe and kill hundreds of innocent peopleatastrophic effects especially by dependable eddxed
systems.

Fig. 1. Dependable embedded system development

16

KNWS 2010

Another problem is connected with
documentation. It is well known that a project ddobe

fully documented. Lack of documentation may cause t problem either

thedesigner

has to carefully analyze received
counterexamples, find the source of an error ahdedbe
by changing system model or the

overseen of some organizational and technical ésmec requirements list. Without human interaction theereed

that the development process will last for a loegqad of
time due to these lacks. But even if the documgntas

prepared carefully by all team members, it shoudd b

results do not localize the problem, they just rneenthat
there is a problem.
Required properties of dependable embedded system

ensured that there is a correct and complete fléw are defined using temporal logic [4] formulas. Thee

documentation.
distributed in the team, i.e. if a complete docutagon is
kept by its owner or is delivered not to the intted team
members but only to some part of the team whicts chad
need it, is just useless.

2.1. POSSIBLE SOLUTION MODEL CHECKING
FOR FORMAL VERIFICATION OF SPECIFICATION

Documentation should be correctlgoded using the specification language of a chosedel

checker. User has to specify as many desired piepers
possible. This is due to the fact that only theirgf
properties will be checked.

2.2. ALITTLE BACKGROUND ON TEMPORAL LOGIC

Temporal logic [4] [6] [7] derives from modal logic
and was introduced into computing science by Amir

Errors in the specification can be detected usingnuelliin 1977 when he proposed to use tempogat im
formal verification methods [2] [5]. They can beeds concurrent and re-active systems. Nowadays it ésl &
when the real System does not phys|ca||y exist yéﬂ{e” in program SpeCification as in its Veriﬁcaﬂo
preventing from possible errors on an early stage &ynthesis and even logical programming. Using temipo

system development. One of themMsdel Checkind3]

logic and its operators it is possible to formadiyecify

which will be further presented, not forgetting abo €mbedded system functionality.

Theorem Proving[5] as another formal verification

method with all its advantages and disadvantagesie\

Linear Temporal Logic (LTL) is a classical temporal
logic and describes relations in the system spegjfgtate

checking allows fully automated system verificatiand ~Sequences. In some states a given formula cartiséesh
error detection in el 1(](Icielle system specification by While it can not be satisfied in the others. Basimporal
computer deduction toolsnpdel checkejs The technique 10gic operators with their meanings and examples ar
can be used to verify the whole system or just spareof listed in Table 1.

it (partial verification). It is especially valuable by large
systems where the design process lasts for a lerigdpof
time and is a complex and difficult task. Then the

Table 1.
Basic temporal logic operators

verification can be performed step-by-step durimg t Sign | Meaning | Example| Explanation
design phase, each time considering only a subket o| L[always 0p p is true in all
requirements. states

It is important to remember that model checking can 0 sometimes op p is true in
not prove that the system model is completely abrri¢ some states
can just prove that the model does or does nosfgati 0 next op p is true in th¢
specified requirements. next state

It verifies whether the requirements are satisfied

defined system model. User has to formally specify temporal logic with time branches is Computation
requirements for the e_mbeddeq system. Itis alsde®to T ce Logic (CTL). Time is here presented as a tree
model the system using description language of@@m panching out into the future with present momesitte

moq_el checker. Comput_er deduction tool automaticall.qq: Basic temporal connectors are presented fiteT2
verifies the system and gives an answer whethemtiael
Table 2.

satisfies the specification or not (model checking
technique is schematically presented in Fig. 2)ndf — Temporal connectors
some errors must have been detected and appropriate
counterexamples are generated.

them‘de

— requirements i
I/ fist satisfy the

Quantifier | Explanation
Path quantifiers
E for some path
A for all paths
State quantifiers
F for some state
G for all states

—

madel

specification?

\destriptinn

Path quantifiers are characteristic for branchinget
temporal logic and are meant for paths beginniognfia
) o __ given state. State quantifiers are for states at fhath.

Discussed formal verification method can '”d'cat%ombining path and state quantifiers it is possitde
some errors either in requirements specificationiror gescripe complex dependencies, like for example:

model description. In the first situation some liegments = Afp — In every path there is some state where
may have been incorrectly formulated. In the second formula p is true

situation the system design itself may be incor®gstem

Fig. 2.Model checking technique

KNWS 2010 17

= Efp — In some path there is some state wheilast longer than the product design phase. Moredher
formula p is true cost of tests can highly increase. Here appearssailge

= Agp — In every path in every state formula p ishuge gap. Currently cost reductions are populad an
true following further with such reasoning, the reduntif test

= Egp — In some path in every state formula p isosts is considered. Therefore nowadays therdrend in
true turning end-user into a tester which ends with pasing

Model checking technique uses temporal logic angartly tested products to the market.
allows to formally verify specifications of depeinda

embedded systems. 3.1. ROSSIBLE SOLUTION INDEPENDENT TESTER
TEAMS
3. GAPS IN TESTS Dependable embedded systems should be carefully

) o tested so that as many errors as possible are fatrel

Test phase should find all existing errors so that greamed test phase indicates all errors, but iityesmme
fina_l product is as much reliable as poss_ible. Hewet is of them may be easily overseen. Testing phase ghoul

a difficult task. Embedded systems require hugetaof nyolve additionally independent tester teams (Fj.—

rigorous tests which ensure appropriate quality [4}e one team with engineers and the second with future
main problem is the fact that exhausting testingften ordinary users.

impossible. There are white-box (structural), black
(functional), module, and integration tests neagsda N\
prove that designed productiellJ[J[Ic previously
assumed requirements. It may not be possible tokchk
configurations of input data with all configurat®of the Engineers connected
parameters of the surrounding environment. Thigatds / ith the project
possible gaps in the test phase which may causasdhze \ \
errors which could be handled will not be found. ’ >
One of them is the situation where tests do noecov
all important fields and technical aspects. Oftestdr
concentrates on particular field of dependable elubé 0
system usage and does not foresee that somethieg ot @
can happen. Tester teams should include innovatnce %
creative testers which foresee even the so-catietd
possible-to-happen-situation§his is especially important
by embedded systems which have to be fully relig@le Fig. 3. Proposed tester teams

Test quality depends though on the appropriatectete
of test cases.

Embedded system Engineers not connected
with the project

Ordinary users

Engineers understand how everything operates and

ay concentrate on more technical aspects, like i.e

ith Inbmgny_ industrial projects protot?/pes are _teSteB;presentation of data or imperfect randomnessis It
either by designers or engineers strongly connemm_z'm}l important that no one of tester team took partrimdpct

particular project Frequer_lt reason is cost miritiimn design or development. Then they have fresh loak an
and short development time. Nowadays the very faﬁjiay spend much energy on testing

gvo!utmn O(; t((ejchncljlogy enforges short ftterm of mrn]ntd Product prototypes should also be tested by orginar
esign an evelopment. Time is 0 en to short t9sars who the product is addressed to. They comaterdgn
DelD [all test cases. To reduce the test time compani S functionality and test both the desired proerand

may as_swin dde3|gners hto ;estlnlg %halfe. Ithdhas situations often not taken into consideration b
economical advantages that they already know taeytt o\yineers. They may i.e. push multiple times thmesa

and its desired functionality, so that they do waste time button or the same combination of buttons to fasome

on getting to know the documentation. However imma o, tion of dependable embedded system. Somettnes i

situations designers are confident or just assul@ t,<aq on lack of experience in using the devicehSu
something operates correctly and do not concentate i icie can help in discovering bugs of the device

obvious sys';]em propergles. U_nfortungltely, e;]/_er;bw«ms caused by not foreseen useel) I(Icie or invalid data
properties there may be a tiny problem which wolkd i, ¢ “pesigner who is testing self-made devicemftan

easy found during a simple test, but someone hasﬁ t know all possibleTelIIcie of an not experienced

perform it. | | f ional . , ken i simple end-user. Therefore some part of test habeto
Not only manual functional testing is taken intorgji764 with testers outside of a project.

account. Automated testing plays a strong roleatest
projects. Considered are here software as welaedbnare
tests. In test environment an appropriate prepmarabf 4. GONCLUSION
such procedure is even more important. Let us asshat
there is an error in test procedure, which omits oh key
system properties / features. Such test can falsere the
system quality which can have tragic results. Tioeecthe
design of test environment and automated test gioes
must be prepared even more carefully than testsgbrsy
That means that sometimes test procedure preparcdio

As shortly presented in the previous sections the
design and test technology of dependable embedded
systems involve many traps and there are numerlacs$
where something can go wrong.

Human being is always a possible gap in design and
test technology. Both phases can not be perfornidabut
people but this fact makes it also possible to robrthe

18 KNWS 2010

gaps. People involved in the dependable embeddsdmnsy
development should consider potential possibleasdns
and think one more time, before they do anythinge T
technology itself can not provide high product dalit
can support it, but intelligent human interactienhere
always needed.

There exists an assumption that there is no teahnic
system which is 100% reliable and which has norsrro
However, the number of them should be minimizethab
the reliability, availability and maintainabilityses. Fault-
tolerant systems have such advantage that theyrgdo
keep the reliability of computation even in thegaece of
faults. This is achieved mainly by redundancy ofada
instructions, software, hardware and time. Depeledab
embedded system should operate correctly over tame,
even if it is not hundred percent correct or some
unpredicted circumstances occur then the poteeffatt
of a failure should be avoided or just minimized.

mgr inz. lwona Grobelna

Uniwersytet Zielonogorski

Wydziat Elektrotechniki, Informatyki i
Telekomunikacji

Instytut Informatyki i Elektroniki

ul. Podgoérna 50
65-246 Zielona Goéra

| e-mail:i.grobelna@iieuz.zgora.pl

mgr inz. Michat Grobelny
Uniwersytet Zielonogorski

Wydziat Elektrotechniki, Informatyki i
Telekomunikacji

ul. Podgoérna 50
65-246 Zielona Goéra

e-mail: m.grobelny@weitiz.zgora.pl

REFERENCES

[1] A. Avizienis, J. Laprie, and B. RandeFundamental
Concepts of Computer System Dependability
IARP/IEEE-RAS Workshop on Robot
Dependability: Technological Challenge of
Dependable Robots in Human Environments, Seoul,
Korea, May 2001

[2] E.M. Clarke, J.M. Wing et alFormal methods: State
of the Art and Future DirectionsACM Computing
Surveys, Vol. 28, No. 4, 1996

[3] E.A. Emerson,The Beginning of Model Checking:
A Personal Perspectiyd_ecture Notes in Computer
Science, 25 Years of Model Checking: History,
Achievements, Perspectives, 2008, pp. 27 — 45

[4] M. Huth, M. Ryan, Logic in Computer Science.
Modelling and Reasoning about Syste@ambridge
University Press 2004

[5] C. Kern, M.R. GreenstreetFormal Verification
in Hardware Design: A SurveyACM Transactions
on Design Automation of Electronic Systems
(TODAES), Vol. 4, Issue 2, April 1999,
pp. 123 - 193

[6] L. Lamport, “Sometime” is sometimes “not never”
On the Temporal Logic of Programs, Proceedings
of the Seventh ACM Symposium on Principles
of Programming Languages, ACM SIGACT-
SIGPLAN 1980, pp. 174 — 185

[7] M.V. Rice, M.Y. Vardi, Branching vs. Linear Time:
Final Showdown Proceedings of the 2001
Conference on Tools and Algorithms for the
Construction and Analysis of Systems, TACAS
2001, LNCS Volume 2031, Springer-Verlag 2001,
pp.1-22

[8] B.Schnor,Dependable and Fault Tolerant Distributed
SystemsDAAD-DEDIS Summer Academy, Cottbus
5.9.2008

[9] Wei-Tek Tsai, Lian Yu, Feng Zhu, Paul, RRapid
embedded system testing using verification patterns
Software, |IEEE Volume 22, Issue 4, July-Aug. 2005
pp. 68 — 75

