
KNWS 2010 ___ 15

Gaps in design and tests
of dependable embedded systems

Iwona Grobelna, Michał Grobelny

Abstract: The paper focuses on gaps in design and test
technology for dependable embedded systems. Possible
gaps in design may influence system �el���cie and as
the result final product may not �el��� all requirements
or some of desired properties. Test phase is also important
as it may indicate even subtle errors which occurred in
previous phases. The article presents possible solutions to
improve the design and test technology.

Keywords: design, tests, dependable embedded systems,
model checking, temporal logic

e-� INTRODUCTION
Dependable embedded systems [1] are currently used

even in the today-life domains, like in cars, planes, trains,
etc. The desired properties of such systems are high
reliability, availability, maintainability, safety and
security. Depending on particular usage scenario some of
the properties may have more important meaning than the
others, but in some degree all of these mentioned
properties should be ensured. Dependable embedded
systems are also intensive researched by scientific
communities, like by The German Indonesian Tsunami
Early Warning System [8]. The project has to manage
several subsystems and has therefore high requirements
regarding the reliability.

The development of a system involves couple steps
which must occur one after the other (Fig. 1). The process
starts with design phase and ends with tests. Both phases
are very important.

Fig. 1. Dependable embedded system development

The design phase should end with a fully complete
and correct design. Possible errors in this phase may
influence oncoming phases and the whole venture and
generate enormous costs. The later the errors will be
detected, the faster the costs of repairing them rise.
Additional fact which has to be taken into account
especially by dependable embedded systems is that they
are supposed to be fully reliable, available, safe and secure
all the time. Even a tiny error in design phase may change
the total system �el���cie and may have tragic effects,
i.e. in transport domain (like a plane crash) it may cause a
catastrophe and kill hundreds of innocent people.

Therefore early discovery of errors may save time, money
and even people lives.

Test phase is also important as it may detect some
errors which occurred in earlier phases. Tests are quite
expensive for companies, but no one should even think
about not performing them. The fast technology progress
enforces reduction of time and resources spent on tests.
Even though in the minimum scenario the most important
cases should be covered.

The most frequently occurring gaps in design and test
phases in development of dependable embedded systems
are presented in the next sections. Additionally there are
proposed solutions to solve some of the problems, taking
control over one of the possible gaps in design and test
phase.

2. GAPS IN DESIGN
Possible gaps in design phase which may have an

influence on the dependable embedded system
�el���cie are connected with human beings. Therefore
this phase may be improved by changing organizational
aspects of a company.

When starting with a new project the requirements
have to be fully formulated. Unfortunately it may happen
that the requirements will not be complete. This may cause
that the system will operate correctly due to the
requirements but it will not be fully reliable and available,
because some of the important requirements may have
been omitted. Another problem connected with the
requirements is the situation when informal specified
requirements are ambiguous. Depending on the selection
of system designers, they may be correctly or incorrectly
interpreted. The second case can have an enormous
influence on dependable embedded system �el���cie.
The requirements list should therefore be complete and
include both functional and non-functional requirements
(addressing the quality, performance, security, etc.) and be
easy to understand for all members of a team.

Similar problems may occur by embedded system
specification. It may happen that it will be incomplete. It
may also happen that it will be incorrect. Following an
incorrect specification, there will be an incorrect
implementation and finally there may be an incorrect
product! And either the whole development process will
start again from the beginning (which causes redundant
costs) or the final product will be released what may have
catastrophic effects especially by dependable embedded
systems.

 16 ___ KNWS 2010

Another problem is connected with the
documentation. It is well known that a project should be
fully documented. Lack of documentation may cause the
overseen of some organizational and technical aspects or
that the development process will last for a long period of
time due to these lacks. But even if the documentation is
prepared carefully by all team members, it should be
ensured that there is a correct and complete flow of
documentation. Documentation should be correctly
distributed in the team, i.e. if a complete documentation is
kept by its owner or is delivered not to the interested team
members but only to some part of the team which does not
need it, is just useless.

2.1. POSSIBLE SOLUTION: MODEL CHECKING
FOR FORMAL VERIFICATION OF SPECIFICATION

Errors in the specification can be detected using
formal verification methods [2] [5]. They can be used
when the real system does not physically exist yet,
preventing from possible errors on an early stage of
system development. One of them is Model Checking [3]
which will be further presented, not forgetting about
Theorem Proving [5] as another formal verification
method with all its advantages and disadvantages. Model
checking allows fully automated system verification and
error detection in �el���cie�e system specification by
computer deduction tools (model checkers). The technique
can be used to verify the whole system or just some part of
it (partial verification). It is especially valuable by large
systems where the design process lasts for a long period of
time and is a complex and difficult task. Then the
verification can be performed step-by-step during the
design phase, each time considering only a subset of
requirements.

It is important to remember that model checking can
not prove that the system model is completely correct. It
can just prove that the model does or does not satisfy
specified requirements.

It verifies whether the requirements are satisfied in
defined system model. User has to formally specify
requirements for the embedded system. It is also needed to
model the system using description language of a chosen
model checker. Computer deduction tool automatically
verifies the system and gives an answer whether the model
satisfies the specification or not (model checking
technique is schematically presented in Fig. 2). If not –
some errors must have been detected and appropriate
counterexamples are generated.

Fig. 2. Model checking technique

Discussed formal verification method can indicate
some errors either in requirements specification or in
model description. In the first situation some requirements
may have been incorrectly formulated. In the second
situation the system design itself may be incorrect. System

designer has to carefully analyze received
counterexamples, find the source of an error and solve the
problem either by changing system model or the
requirements list. Without human interaction the received
results do not localize the problem, they just mention that
there is a problem.

Required properties of dependable embedded system
are defined using temporal logic [4] formulas. They are
coded using the specification language of a chosen model
checker. User has to specify as many desired properties as
possible. This is due to the fact that only the defined
properties will be checked.

2.2. A LITTLE BACKGROUND ON TEMPORAL LOGIC
Temporal logic [4] [6] [7] derives from modal logic

and was introduced into computing science by Amir
Pnuelli in 1977 when he proposed to use temporal logic in
concurrent and re-active systems. Nowadays it is used as
well in program specification as in its verification,
synthesis and even logical programming. Using temporal
logic and its operators it is possible to formally specify
embedded system functionality.

Linear Temporal Logic (LTL) is a classical temporal
logic and describes relations in the system specifying state
sequences. In some states a given formula can be satisfied,
while it can not be satisfied in the others. Basic temporal
logic operators with their meanings and examples are
listed in Table 1.

Table 1.
Basic temporal logic operators

Sign Meaning Example Explanation
� always � p p is true in all

states
◊ sometimes ◊ p p is true in

some states
o next o p p is true in the

next state

Temporal logic with time branches is Computation

Tree Logic (CTL). Time is here presented as a tree
branching out into the future with present moment as the
root. Basic temporal connectors are presented in Table 2.

Table 2.
Temporal connectors

Quantifier Explanation
Path quantifiers

E for some path
A for all paths

State quantifiers
F for some state
G for all states

Path quantifiers are characteristic for branching time

temporal logic and are meant for paths beginning from a
given state. State quantifiers are for states in that path.
Combining path and state quantifiers it is possible to
describe complex dependencies, like for example:

� Afp — In every path there is some state where
formula p is true

KNWS 2010 ___ 17

� Efp — In some path there is some state where
formula p is true

� Agp — In every path in every state formula p is
true

� Egp — In some path in every state formula p is
true

Model checking technique uses temporal logic and
allows to formally verify specifications of dependable
embedded systems.

3. GAPS IN TESTS
Test phase should find all existing errors so that the

final product is as much reliable as possible. However it is
a difficult task. Embedded systems require huge amount of
rigorous tests which ensure appropriate quality [9]. The
main problem is the fact that exhausting testing is often
impossible. There are white-box (structural), black-box
(functional), module, and integration tests necessary to
prove that designed product �el���c previously
assumed requirements. It may not be possible to check all
configurations of input data with all configurations of the
parameters of the surrounding environment. This indicates
possible gaps in the test phase which may cause that some
errors which could be handled will not be found.

One of them is the situation where tests do not cover
all important fields and technical aspects. Often tester
concentrates on particular field of dependable embedded
system usage and does not foresee that something other
can happen. Tester teams should include innovative and
creative testers which foresee even the so-called not-
possible-to-happen-situations. This is especially important
by embedded systems which have to be fully reliable [9].
Test quality depends though on the appropriate selection
of test cases.

In many industrial projects prototypes are tested
either by designers or engineers strongly connected with
particular project. Frequent reason is cost minimization
and short development time. Nowadays the very fast
evolution of technology enforces short term of products
design and development. Time is often to short to
�el��� all test cases. To reduce the test time companies
may assign designers to testing phase. It has the
economical advantages that they already know the product
and its desired functionality, so that they do not waste time
on getting to know the documentation. However in many
situations designers are confident or just assume that
something operates correctly and do not concentrate on
obvious system properties. Unfortunately, even in obvious
properties there may be a tiny problem which would be
easy found during a simple test, but someone has to
perform it.

Not only manual functional testing is taken into
account. Automated testing plays a strong role in latest
projects. Considered are here software as well as hardware
tests. In test environment an appropriate preparation of
such procedure is even more important. Let us assume that
there is an error in test procedure, which omits one of key
system properties / features. Such test can false ensure the
system quality which can have tragic results. Therefore the
design of test environment and automated test procedures
must be prepared even more carefully than tested system.
That means that sometimes test procedure preparation can

last longer than the product design phase. Moreover, the
cost of tests can highly increase. Here appears a possible
huge gap. Currently cost reductions are popular, and
following further with such reasoning, the reduction of test
costs is considered. Therefore nowadays there is a trend in
turning end-user into a tester which ends with purchasing
partly tested products to the market.

3.1. POSSIBLE SOLUTION: INDEPENDENT TESTER

TEAMS
Dependable embedded systems should be carefully

tested so that as many errors as possible are found. The
dreamed test phase indicates all errors, but in reality some
of them may be easily overseen. Testing phase should
involve additionally independent tester teams (Fig. 3) –
one team with engineers and the second with future
ordinary users.

Fig. 3. Proposed tester teams

Engineers understand how everything operates and
may concentrate on more technical aspects, like i.e.
representation of data or imperfect randomness. It is
important that no one of tester team took part in product
design or development. Then they have fresh look and
may spend much energy on testing.

Product prototypes should also be tested by ordinary
users who the product is addressed to. They concentrate on
its functionality and test both the desired properties and
the situations often not taken into consideration by
engineers. They may i.e. push multiple times the same
button or the same combination of buttons to force some
reaction of dependable embedded system. Sometimes it is
based on lack of experience in using the device. Such
�el���cie can help in discovering bugs of the device
caused by not foreseen user �el���cie or invalid data
input. Designer who is testing self-made device often can
not know all possible �el���cie of an not experienced
simple end-user. Therefore some part of test has to be
realized with testers outside of a project.

4. CONCLUSION
As shortly presented in the previous sections the

design and test technology of dependable embedded
systems involve many traps and there are numerous places
where something can go wrong.

Human being is always a possible gap in design and
test technology. Both phases can not be performed without
people but this fact makes it also possible to control the

 18 ___ KNWS 2010

gaps. People involved in the dependable embedded system
development should consider potential possible situations
and think one more time, before they do anything. The
technology itself can not provide high product quality, it
can support it, but intelligent human interaction is here
always needed.

There exists an assumption that there is no technical
system which is 100% reliable and which has no errors.
However, the number of them should be minimized so that
the reliability, availability and maintainability rises. Fault-
tolerant systems have such advantage that they can try to
keep the reliability of computation even in the presence of
faults. This is achieved mainly by redundancy of data,
instructions, software, hardware and time. Dependable
embedded system should operate correctly over time, and
even if it is not hundred percent correct or some
unpredicted circumstances occur then the potential effect
of a failure should be avoided or just minimized.

REFERENCES
[1] A. Avizienis, J. Laprie, and B. Randell, Fundamental

Concepts of Computer System Dependability,
IARP/IEEE-RAS Workshop on Robot
Dependability: Technological Challenge of
Dependable Robots in Human Environments, Seoul,
Korea, May 2001

[2] E.M. Clarke, J.M. Wing et al., Formal methods: State
of the Art and Future Directions, ACM Computing
Surveys, Vol. 28, No. 4, 1996

[3] E.A. Emerson, The Beginning of Model Checking:
A Personal Perspective, Lecture Notes in Computer
Science, 25 Years of Model Checking: History,
Achievements, Perspectives, 2008, pp. 27 – 45

[4] M. Huth, M. Ryan, Logic in Computer Science.
Modelling and Reasoning about Systems, Cambridge
University Press 2004

[5] C. Kern, M.R. Greenstreet, Formal Verification
in Hardware Design: A Survey, ACM Transactions
on Design Automation of Electronic Systems
(TODAES), Vol. 4, Issue 2, April 1999,
pp. 123 – 193

 [6] L. Lamport, “Sometime” is sometimes “not never”,
On the Temporal Logic of Programs, Proceedings
of the Seventh ACM Symposium on Principles
of Programming Languages, ACM SIGACT-
SIGPLAN 1980, pp. 174 – 185

[7] M.V. Rice, M.Y. Vardi, Branching vs. Linear Time:
Final Showdown, Proceedings of the 2001
Conference on Tools and Algorithms for the
Construction and Analysis of Systems, TACAS
2001, LNCS Volume 2031, Springer-Verlag 2001,
pp. 1 – 22

[8] B.Schnor, Dependable and Fault Tolerant Distributed
Systems, DAAD-DEDIS Summer Academy, Cottbus
5.9.2008

[9] Wei-Tek Tsai, Lian Yu, Feng Zhu, Paul, R., Rapid
embedded system testing using verification patterns,
Software, IEEE Volume 22, Issue 4, July-Aug. 2005
pp. 68 – 75

mgr inż. Iwona Grobelna
Uniwersytet Zielonogórski
Wydział Elektrotechniki, Informatyki i
Telekomunikacji
Instytut Informatyki i Elektroniki

ul. Podgórna 50
65-246 Zielona Góra

e-mail: i.grobelna@iie.uz.zgora.pl

mgr inż. Michał Grobelny
Uniwersytet Zielonogórski
Wydział Elektrotechniki, Informatyki i
Telekomunikacji

ul. Podgórna 50
65-246 Zielona Góra

e-mail: m.grobelny@weit.uz.zgora.pl

