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Deadlock detection in networks of automata 
communicating via flags 
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Abstract: A range of digital systems can be represented as 

the state machine networks in which FSMs communicate 

with the help of flip-flops. The article presents 

a methodology of detecting possible deadlocks in such 

networks. The methodology is illustrated by applying it to 

a project of a pipeline processor. 
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1. INTRODUCTION

Finite state machine (FSM), or finite automaton, is 
a model widely used in digital system design. Modeling of 

complex systems, however, often requires using more than 

one state machine. Several automata can be composed into 

a network. For such networks, different ways of 

communication between the automata are used. 
Automata can be connected directly (that means that 

the input of one automaton can be connected to the output 

of another one). But it is inconvenient to consider inputs 

and outputs of the automata in such networks as single 

symbols, as it is done in classical automata theory. More 

flexible and popular approach, allowing to represent easily 
Mealy and Moore (and mixed) automata with multiple 

outputs, uses the concept of broadcast events. It is applied 

in various models of concurrent finite state machines [2,5]. 

This fits perfectly well for the systems of logical control, 

but may be not enough for more complex cases, as 

modeling the structure of processors. Then the flags 
(variables) may be used as one of the ways of 

communication between automata [6]. Difference between 

flags and events is that an event has a short life (occurs 

only during an instant of time, unless it is not generated 

again and again by an active state, as “do” events in 

Statecharts [5]), and a flag keeps a value which is assigned 
to it by an action until another action sets another value. 

In many models more complex dataflow domains are 

used [1,6]. But even for complex cases analysis of 

simplified models can provide some important information 

for verification. Detection of deadlocks (the situations in 

which two or more automata are waiting for some action 

of each other, so all of them are blocked) is one of the 

most important verification tasks. Deadlock detection in 

the FSM networks with communication via events is 

considered in [3]. Here we consider the same task for the 

FSM networks with communication via binary flags. 

A project of a pipeline processor is used for an example. 

2. AN EXAMPLE: A PIPELINE PROCESSOR

As an example we use a project of a basic pipeline 

RISC processor with high performance, designed as 

a diploma project by Ilan Kutzman and Alex Raitzin at Bar 
Ilan University, Israel, supervised by Prof. Samary 

Baranov [4]. Figs 1-4 show the Algorithmic State 

Machines (ASMs) [1] with generalized operators (not 

expanded here), specifying behavior of four pipeline 

stages. The fifth stage (Write stage) is not shown here, as 

less important for deadlock detection. This example has 
more than 109 states.  

Fig. 1. Fetch stage 

3. ANALYSIS PROCESS

3.1. CONSTRUCTING OF THE MODEL

To create a model with reduced complexity 

(consisting of FSMs, not ASMs) an abstraction can be 

used. At this step we are going to abandon the 

computation of variables and to consider only the single 

Boolean variables to which concrete values are assigned 

by concrete operators (processing steps). In the given 

system there are following such variables (flags): Fop1B, 

Fop2B, FImB, BranChk, BIP, IEN, FGO and FGI. 
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AND, ADD and SUB   INC, DEC and COM   STR instruction 

OUT instruction        IOF instruction      ION instruction 

Fig. 2. Operands1 stage 
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Fig. 3. Operands2 stage (only ASMs for the branch 

instructions are shown) 

AND, ADD, SUB, SHL, SHR,  

CIL, CIR, INC, DEC, COM     LOD instruction      INP instruction     STR instruction 

Fig. 4. Implement stage 

3.2. BUILDING AND ANALYSIS OF WFG 

Now we are going to construct a Wait-for graph 

(WFG) [8] – a kind of dependency graph, in which nodes 

represent processes, and arcs represent blockages. In our 
graph nodes will correspond to the automata. An arc from 

automaton Ai to Aj means that Aj has a state in which it is 

waiting for certain value of flag x, and Ai has a state in 

which it assigns this value to x. The arc is labeled by x

( x ), if Aj waits for value 1 (0). The difference between 

this graph and the WFG used for deadlock detection in 

operating systems is that it is constructed not for a current 

situation but for all possible dependencies in given system. 

Flags FGO and FGI cannot cause a deadlock, 

because no value of them can block any automaton. Let us 

construct the WFG representing dependencies via the rest 

of flags. It is shown in fig. 5.  

If there is a deadlock, there is a corresponding cycle 

in the WFG. But existing of a cycle is not a sufficient 

condition of a deadlock. For example, there is a cycle 

between Write and Impl nodes, but it does not indicate any 

deadlock, because it would imply that flag FwrB has value 

0 and 1 at the same time. A cycle in the WFG means 

cyclic waiting, if for any literal labeling an arc in it, its 

complement does not appear in the cycle. Then a deadlock 

is possible, if the flags have values turning the literals 

appearing in the cycle to 1, and the automata are in the 

corresponding states. We call such cycle a deadlock cycle. 

Fig. 5. Wait-for graph for the pipeline processor 
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All cycles in an oriented graph can be generated by 

the algorithm described in [7]. As far as number of cycles 

in a graph depends exponentially on its size, it is 

reasonable to simplify the graph by removing the nodes 

which cannot belong to the cycles which are interesting for 

us. Such simplification can be performed step by step 

(removing of some nodes can allow removing the 

following ones). Of course any node which indegree or 

outdegree is 0 can be removed, because it cannot belong to 

any cycle. Also, if every incoming arc of a node is labeled 

by a literal and every outgoing arc is labeled by its 

complement, this node cannot belong to a deadlock cycle. 
That is the case for node Write: its incoming arc is labeled 

by FwrB, and both outgoing arcs are labeled by FwrB . 

But after removing node Write from the graph, node Impl 

turns to be in similar situation: now every its incoming arc 

is labeled by FimB, and every outgoing – by FimB . That 

means that Impl also cannot be deadlocked. 

Further simplification can be performed by removing 

some arcs. If every incoming arc of a node is labeled by 

the same literal, then no outgoing arc labeled by its 

complement can belong to a deadlock cycle. Every such 
outgoing arc can be removed. In our example, both 

incoming arcs of Oper2 have labels Fop2B. Then two 

outgoing arcs labeled by BFop2  can be removed. It 

implies the situation in which Oper1 has only one 

incoming arc labeled with Fop1B, which means that the 

arc from Oper1 to Fetch can be removed. The simplified 

graph is shown in fig. 6.  

This graph, as it is easy to see now, has 4 deadlock 
cycles. But one may note that some of them in a sense 

cover others. For any cycle Fetch�Oper1�Oper2�Fetch 

there is a cycle Fetch�Oper2�Fetch, labeled with the 
same literals except Fop1B. That means that stages Fetch, 

Operands1 and Operands2 can be mutually blocked, only 

if Fetch and Operands2 are mutually blocked. So it is 

enough to check possibility of two deadlocks: 

corresponding to cycles Fetch �� ��
BFop 2

Oper2 

��� ��
BranChk

Fetch and Fetch �� ��
BFop 2

Oper2 ���
BIP

Fetch. Other deadlocks are not possible in this system. 

Fig. 6. Reduced Wait-for graph  

3.3. CHECKING REACHABILITY OF THE 

DEADLOCKS

Existing of a deadlock cycle in the WFG means, that 

there exists a combination of states of automata, in which 

they are deadlocked, but it does not always mean that such 

combination is reachable from the initial state of the 

system. Now, similarly as it was proposed for deadlock 

analysis in Statecharts [3], after detection of possibility of 

deadlocks by means of structural analysis, it is necessary 

to check reachability of possible deadlocks. 

To simplify this check, let us use the reduced 

flowcharts representing only the behavior related to 

reading or writing the flags appearing in the reduced WFG 

(Fop1B, Fop2B, BranChk, BIP). The fragments of 

automata which have nothing to do with the flags can be 

reduced. Identical fragments can be fused. Such reduced 

representation of Fetch stage is presented in fig. 7. 

As one can see, at this level we represent the system 

as a nondeterministic state machine. Here big rounds mean 

fragments of the automaton graph which neither read nor 

write the flags we are interested in. They can end up in 

more than one state, depending on the inputs we abstract 

here. That’s why they may have multiple outputs. Small 

rounds mean the states in which the automaton waits for 

a value of a flag. Only in such states it can be deadlocked. 
As follows from the WFG, the only states in which the 

Fetch stage can be deadlocked are a and d. 

Reduced representations of Operands1 and 

Operands2 are shown in fig. 8. There is only one 

possibility for stage Operands2 to be deadlocked: if it is 

blocked in state a, i.e. at the very beginning. Analysis of 

the state space of the reduced flowcharts demonstrates 

that, assuming that initially all flags have value 0, a 

deadlock corresponding to the cycle 

Fetch �� ��
BFop 2

Oper2 ���
BIP

Fetch is not possible. 

Indeed, Fetch can be blocked in state d (waiting for 

BIP=0) only when BIP=1, BIP can be set to 1 only by 

Operands2, and Operands2 always sets BIP to 0 

afterwards and cannot be blocked between these two 

operators. 

The last potential deadlock we have to consider is 

when Fetch is in state a (waiting for BranChk=1) and 

Operands2 is in its state a (waiting for Fop2B=1). At the 
level of the reduced flowcharts it seems to be possible: for 

example, if Fetch immediately enters state a, both 

Operands stages cannot leave their initial states. Such 

analysis is not enough in our case, because transitions 

between states in the stages of pipeline processor are not 

independent. So we have to turn to the detailed description 
of the pipeline processor and to check whether this 

deadlock is indeed possible. 

Analysis at the level of detailed descriptions shows 

that, according to the generalized operator CheckBranch 

(which details are not shown here), Fetch stage can enter 

the state of waiting for BranChk=1 only when there is 
branch instruction in Operands2 stage. It means that it 

cannot happen from the very beginning of system 

functioning, because each stage maintains its own copy of 

instruction, and the copy for Operands2 can be written 

only by operator Fetch2Oper2 (Fetch) or Oper12Oper2 

(Operands1). First two stages can function avoiding 
executing these operators (Operands2 stage is skipped for 
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some instructions – see figs 1 and 2). However, as far as 

Operands2 clears IR1O2 register, which contains this 

stage’s copy of instruction (see fig. 3), and flag Fop2B is 

set to 1 always together with writing the instruction to 

IR1O2, the situation in which both Fetch and Operands2 

stages are waiting for each other is not possible. So, we 

have shown that the system is deadlock-free. 
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Fig. 7. Reduced flowchart of the Fetch stage 

Begin

1

1

Fop1B:=0

Fop2B:=1

a

Fop1B
0

End

Fop1B:=0

1

b

Fop2B

2

0

Begin

1

1

BranChk:=1
BIP:=1

a

Fop2B
0

2

End

BranChk:=1
BIP:=0

Fop2B:=0

BIP:=0

Fop2B:=0

Operands1 stage     Operands2 stage

Fig. 8. Reduced flowchart of the Operands1 and 

Operands2 stages 

Note that in the initial design described in [4] there 

was no zeroing of IR1O2 after every branch, and the 

deadlock corresponding to the cycle 

Fetch �� ��
BFop 2

Oper2 ��� ��
BranChk

Fetch was possible. 

It was discovered during simulation of the design. But 

simulation never ensures detecting all possible bugs (in 

this case deadlocks), and formal analysis like proposed in 

this paper does ensure. 

4. SUMMARY

The proposed method consists of the following steps. 

1. Constructing an FSM network model of the analyzed 

system. 

2. Constructing a Wait-for graph describing dependencies 

between the automata. 

3. Reducing the WFG by removing nodes and arcs which 

cannot be visited by any deadlock cycle. 

4. Generating all deadlock cycles in the reduced WFG. If 

there are no such cycles, the system is deadlock-free. 

5. Reducing the fragments of the automata in the network 

which do not deal with the selected flags. 

6. Checking whether the potential deadlocks detected in 

step 4 are reachable in the reduced network. If not, the 

system is deadlock-free. 

7. Checking whether the potential deadlocks, not 

excluded in step 6, are reachable in the analyzed 

system. 

The method can be used for formal verification of 

a wide range of systems with parallel logical control units. 

It allows detecting, without much computational effort and 

without exploration of most of the state space, deadlocks 
possible in a system or ensuring that it is deadlock-free. 
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