
KNWS 2010 __ 245

Deadlock detection in networks of automata
communicating via flags

Andrei Karatkevich

Abstract: A range of digital systems can be represented as

the state machine networks in which FSMs communicate

with the help of flip-flops. The article presents

a methodology of detecting possible deadlocks in such

networks. The methodology is illustrated by applying it to

a project of a pipeline processor.

Keywords: State machines, system design, verification,

graph-schemes, pipeline.

1. INTRODUCTION

Finite state machine (FSM), or finite automaton, is
a model widely used in digital system design. Modeling of

complex systems, however, often requires using more than

one state machine. Several automata can be composed into

a network. For such networks, different ways of

communication between the automata are used.
Automata can be connected directly (that means that

the input of one automaton can be connected to the output

of another one). But it is inconvenient to consider inputs

and outputs of the automata in such networks as single

symbols, as it is done in classical automata theory. More

flexible and popular approach, allowing to represent easily
Mealy and Moore (and mixed) automata with multiple

outputs, uses the concept of broadcast events. It is applied

in various models of concurrent finite state machines [2,5].

This fits perfectly well for the systems of logical control,

but may be not enough for more complex cases, as

modeling the structure of processors. Then the flags
(variables) may be used as one of the ways of

communication between automata [6]. Difference between

flags and events is that an event has a short life (occurs

only during an instant of time, unless it is not generated

again and again by an active state, as “do” events in

Statecharts [5]), and a flag keeps a value which is assigned
to it by an action until another action sets another value.

In many models more complex dataflow domains are

used [1,6]. But even for complex cases analysis of

simplified models can provide some important information

for verification. Detection of deadlocks (the situations in

which two or more automata are waiting for some action

of each other, so all of them are blocked) is one of the

most important verification tasks. Deadlock detection in

the FSM networks with communication via events is

considered in [3]. Here we consider the same task for the

FSM networks with communication via binary flags.

A project of a pipeline processor is used for an example.

2. AN EXAMPLE: A PIPELINE PROCESSOR

As an example we use a project of a basic pipeline

RISC processor with high performance, designed as

a diploma project by Ilan Kutzman and Alex Raitzin at Bar
Ilan University, Israel, supervised by Prof. Samary

Baranov [4]. Figs 1-4 show the Algorithmic State

Machines (ASMs) [1] with generalized operators (not

expanded here), specifying behavior of four pipeline

stages. The fifth stage (Write stage) is not shown here, as

less important for deadlock detection. This example has
more than 109 states.

Fig. 1. Fetch stage

3. ANALYSIS PROCESS

3.1. CONSTRUCTING OF THE MODEL

To create a model with reduced complexity

(consisting of FSMs, not ASMs) an abstraction can be

used. At this step we are going to abandon the

computation of variables and to consider only the single

Boolean variables to which concrete values are assigned

by concrete operators (processing steps). In the given

system there are following such variables (flags): Fop1B,

Fop2B, FImB, BranChk, BIP, IEN, FGO and FGI.

246 __ KNWS 2010

AND, ADD and SUB INC, DEC and COM STR instruction

OUT instruction IOF instruction ION instruction

Fig. 2. Operands1 stage

BCC instruction BCZ instruction

0
FOp2B

0
1 1

0

IR1o2
(6)

0

0

IR1o2
(6)

IR1o2
(7) 1

BranChk:=1
BIP:=1

1

1

IR1o2
(5) 1

Op2o2:=IR2
o2

BIP:=0
IR1o2:=x"0000"

FOp2B:=0

0
S

Begin

End

BCF instruction BUN instruction

Fig. 3. Operands2 stage (only ASMs for the branch

instructions are shown)

AND, ADD, SUB, SHL, SHR,

CIL, CIR, INC, DEC, COM LOD instruction INP instruction STR instruction

Fig. 4. Implement stage

3.2. BUILDING AND ANALYSIS OF WFG

Now we are going to construct a Wait-for graph

(WFG) [8] – a kind of dependency graph, in which nodes

represent processes, and arcs represent blockages. In our
graph nodes will correspond to the automata. An arc from

automaton Ai to Aj means that Aj has a state in which it is

waiting for certain value of flag x, and Ai has a state in

which it assigns this value to x. The arc is labeled by x

(x), if Aj waits for value 1 (0). The difference between

this graph and the WFG used for deadlock detection in

operating systems is that it is constructed not for a current

situation but for all possible dependencies in given system.

Flags FGO and FGI cannot cause a deadlock,

because no value of them can block any automaton. Let us

construct the WFG representing dependencies via the rest

of flags. It is shown in fig. 5.

If there is a deadlock, there is a corresponding cycle

in the WFG. But existing of a cycle is not a sufficient

condition of a deadlock. For example, there is a cycle

between Write and Impl nodes, but it does not indicate any

deadlock, because it would imply that flag FwrB has value

0 and 1 at the same time. A cycle in the WFG means

cyclic waiting, if for any literal labeling an arc in it, its

complement does not appear in the cycle. Then a deadlock

is possible, if the flags have values turning the literals

appearing in the cycle to 1, and the automata are in the

corresponding states. We call such cycle a deadlock cycle.

Fig. 5. Wait-for graph for the pipeline processor

KNWS 2010 __ 247

All cycles in an oriented graph can be generated by

the algorithm described in [7]. As far as number of cycles

in a graph depends exponentially on its size, it is

reasonable to simplify the graph by removing the nodes

which cannot belong to the cycles which are interesting for

us. Such simplification can be performed step by step

(removing of some nodes can allow removing the

following ones). Of course any node which indegree or

outdegree is 0 can be removed, because it cannot belong to

any cycle. Also, if every incoming arc of a node is labeled

by a literal and every outgoing arc is labeled by its

complement, this node cannot belong to a deadlock cycle.
That is the case for node Write: its incoming arc is labeled

by FwrB, and both outgoing arcs are labeled by FwrB .

But after removing node Write from the graph, node Impl

turns to be in similar situation: now every its incoming arc

is labeled by FimB, and every outgoing – by FimB . That

means that Impl also cannot be deadlocked.

Further simplification can be performed by removing

some arcs. If every incoming arc of a node is labeled by

the same literal, then no outgoing arc labeled by its

complement can belong to a deadlock cycle. Every such
outgoing arc can be removed. In our example, both

incoming arcs of Oper2 have labels Fop2B. Then two

outgoing arcs labeled by BFop2 can be removed. It

implies the situation in which Oper1 has only one

incoming arc labeled with Fop1B, which means that the

arc from Oper1 to Fetch can be removed. The simplified

graph is shown in fig. 6.

This graph, as it is easy to see now, has 4 deadlock
cycles. But one may note that some of them in a sense

cover others. For any cycle Fetch�Oper1�Oper2�Fetch

there is a cycle Fetch�Oper2�Fetch, labeled with the
same literals except Fop1B. That means that stages Fetch,

Operands1 and Operands2 can be mutually blocked, only

if Fetch and Operands2 are mutually blocked. So it is

enough to check possibility of two deadlocks:

corresponding to cycles Fetch �� ��
BFop 2

Oper2

��� ��
BranChk

Fetch and Fetch �� ��
BFop 2

Oper2 ���
BIP

Fetch. Other deadlocks are not possible in this system.

Fig. 6. Reduced Wait-for graph

3.3. CHECKING REACHABILITY OF THE

DEADLOCKS

Existing of a deadlock cycle in the WFG means, that

there exists a combination of states of automata, in which

they are deadlocked, but it does not always mean that such

combination is reachable from the initial state of the

system. Now, similarly as it was proposed for deadlock

analysis in Statecharts [3], after detection of possibility of

deadlocks by means of structural analysis, it is necessary

to check reachability of possible deadlocks.

To simplify this check, let us use the reduced

flowcharts representing only the behavior related to

reading or writing the flags appearing in the reduced WFG

(Fop1B, Fop2B, BranChk, BIP). The fragments of

automata which have nothing to do with the flags can be

reduced. Identical fragments can be fused. Such reduced

representation of Fetch stage is presented in fig. 7.

As one can see, at this level we represent the system

as a nondeterministic state machine. Here big rounds mean

fragments of the automaton graph which neither read nor

write the flags we are interested in. They can end up in

more than one state, depending on the inputs we abstract

here. That’s why they may have multiple outputs. Small

rounds mean the states in which the automaton waits for

a value of a flag. Only in such states it can be deadlocked.
As follows from the WFG, the only states in which the

Fetch stage can be deadlocked are a and d.

Reduced representations of Operands1 and

Operands2 are shown in fig. 8. There is only one

possibility for stage Operands2 to be deadlocked: if it is

blocked in state a, i.e. at the very beginning. Analysis of

the state space of the reduced flowcharts demonstrates

that, assuming that initially all flags have value 0, a

deadlock corresponding to the cycle

Fetch �� ��
BFop 2

Oper2 ���
BIP

Fetch is not possible.

Indeed, Fetch can be blocked in state d (waiting for

BIP=0) only when BIP=1, BIP can be set to 1 only by

Operands2, and Operands2 always sets BIP to 0

afterwards and cannot be blocked between these two

operators.

The last potential deadlock we have to consider is

when Fetch is in state a (waiting for BranChk=1) and

Operands2 is in its state a (waiting for Fop2B=1). At the
level of the reduced flowcharts it seems to be possible: for

example, if Fetch immediately enters state a, both

Operands stages cannot leave their initial states. Such

analysis is not enough in our case, because transitions

between states in the stages of pipeline processor are not

independent. So we have to turn to the detailed description
of the pipeline processor and to check whether this

deadlock is indeed possible.

Analysis at the level of detailed descriptions shows

that, according to the generalized operator CheckBranch

(which details are not shown here), Fetch stage can enter

the state of waiting for BranChk=1 only when there is
branch instruction in Operands2 stage. It means that it

cannot happen from the very beginning of system

functioning, because each stage maintains its own copy of

instruction, and the copy for Operands2 can be written

only by operator Fetch2Oper2 (Fetch) or Oper12Oper2

(Operands1). First two stages can function avoiding
executing these operators (Operands2 stage is skipped for

248 __ KNWS 2010

some instructions – see figs 1 and 2). However, as far as

Operands2 clears IR1O2 register, which contains this

stage’s copy of instruction (see fig. 3), and flag Fop2B is

set to 1 always together with writing the instruction to

IR1O2, the situation in which both Fetch and Operands2

stages are waiting for each other is not possible. So, we

have shown that the system is deadlock-free.
Begin

1

a b

BranChk
0

Fop1B

1

BranChk:=0

1 0

c

Fop2B

0
BIP

d

BIP

1

0

2

1

0

3

e

Fop1B
1

Fop1B:=1

0

0

f

Fop1B

0

1

g

Fop2B

0

Fop2B:=1

1

End

1

Fig. 7. Reduced flowchart of the Fetch stage

Begin

1

1

Fop1B:=0

Fop2B:=1

a

Fop1B
0

End

Fop1B:=0

1

b

Fop2B

2

0

Begin

1

1

BranChk:=1
BIP:=1

a

Fop2B
0

2

End

BranChk:=1
BIP:=0

Fop2B:=0

BIP:=0

Fop2B:=0

Operands1 stage Operands2 stage

Fig. 8. Reduced flowchart of the Operands1 and

Operands2 stages

Note that in the initial design described in [4] there

was no zeroing of IR1O2 after every branch, and the

deadlock corresponding to the cycle

Fetch �� ��
BFop 2

Oper2 ��� ��
BranChk

Fetch was possible.

It was discovered during simulation of the design. But

simulation never ensures detecting all possible bugs (in

this case deadlocks), and formal analysis like proposed in

this paper does ensure.

4. SUMMARY

The proposed method consists of the following steps.

1. Constructing an FSM network model of the analyzed

system.

2. Constructing a Wait-for graph describing dependencies

between the automata.

3. Reducing the WFG by removing nodes and arcs which

cannot be visited by any deadlock cycle.

4. Generating all deadlock cycles in the reduced WFG. If

there are no such cycles, the system is deadlock-free.

5. Reducing the fragments of the automata in the network

which do not deal with the selected flags.

6. Checking whether the potential deadlocks detected in

step 4 are reachable in the reduced network. If not, the

system is deadlock-free.

7. Checking whether the potential deadlocks, not

excluded in step 6, are reachable in the analyzed

system.

The method can be used for formal verification of

a wide range of systems with parallel logical control units.

It allows detecting, without much computational effort and

without exploration of most of the state space, deadlocks
possible in a system or ensuring that it is deadlock-free.

ACKNOWLEDGEMENT

I am grateful to Samary Baranov for inspiration,

fruitful discussions and for the example described in [4].

REFERENCES

[1] Baranov S., Logic and System Design of Digital

Systems. Tallinn, TGU, 2008.

[2] Harel D., “Statecharts: a visual formalism for

complex systems”, Science of Computer

Programming, nr 8, pp. 231-274, 1987.

[3] Karatkevich A., „Deadlock analysis in Statecharts”,

Proceedings of the Forum on Specification and

Design Languages – FDL’03, Frankfurt, Germany,

2003, pp. 414-424.

[4] Kutzman I., Raitzin A., Design Of Fast Pipelined

Processor With Complex Addressing Mode. B.Sc.

diploma project, Bar Ilan University, 2007.

[5] Łabiak G., „From UML Statecharts to FPGA - the

HiCoS approach”, Proceedings of the Forum on

Specification and Design Languages – FDL’03,

Frankfurt, Germany, 2003, pp. 354-363.

[6] Lee E.A., “Finite State Machines and Modal Models

in Ptolemy II”, technical report, EECS Department,

Univ. of California, Berkeley, USA, 2009.

[7] Reingold E.M., Nievergelt J., Deo N., Combinatorial

Algorithms. Theory and Practice. Prentice-Hall, Inc.,

1977.

[8] Silberschatz A., Galvin P., Gagne G., Operating

System Concepts, John Wiley & Sons, Inc., 2003.

