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Transition orthogonality in statechart diagrams 

and inconsistencies in binary control system 

Grzegorz Łabiak 

Abstract: The paper concerns the problem of some 
inconsistencies between controller and controlled object in 
control system. These inconsistencies are a results of 
incorrectly built predicates where state of the controller 
does not conforms state of the object. In the paper two 
solutions removing this flaw has been presented: with 
concurrent transition and with local variables. 
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1. INTRODUCTION

1.1. DIGITAL CONTROLLER DESIGN

The first step in digital binary controller design is 
formal specification of controller behavior [1]. Behavior of 
the controller can be specified as a Finite State Machine – 
for simple behavior, as a Petri nets – which because of  
using of concurrency explicitly is much more efficient in 
complex behavior description or as a statechart diagrams 
which traditional FSM enhance with concurrency, 
hierarchy and broadcast mechanism [1][2][6]. It seems that 
statechart diagrams in comparison with Petri nets features 
greater expressive power, especially when exception 
modeling is concerned [3][4]. Next, formally modeled 
behavior can by implemented in programmable devices 
(e.g. FPGA or CPLD) [1]. Every behavior specification 
formalism features transitions which in case of 
deterministic behavior transform activity to the next only 
one sequential state (place). The determinism of such 
models is assured by transition orthogonality (transitions 
are conflict-free), but, in case of statechart it turns out that 
transition orthogonality is not enough condition. 

The paper presents case study where despite the fact 
that transition are conflict-free the control system can 
develop wrong behavior. This problem can be solved by 
introduction concurrent transitions crossing state border, 
or, in case of statechart modular semantic where 
transitions must not cross state border, by introduction 
additional variables. Both solutions are described in the 
paper. 

1.1. BINARY CONTROL SYSTEM

Binary control system is a system where a controller 
which operates on binary values on its input and output 
interacts with controlled object (Fig. 1) [5]. Some signals 
can come to the controller from outside operator and some 
other signals can be visible to the outside world. The 
controller prompts controlled object and the controlled 

object responds with its state signal to the controller and so 
on. The controller is a reactive system that continuously 
have to changes its actions in response to stimuli. In this 
system both controller and controlled object must have 
synchronized its internal states or in other words the 
system as a whole must be consistent. This means that the 
controller forces changes in the object and the controller 
updates its internal states in responses to changes in the 
controlled object.   

Fig. 1. Binary control system 

1.2. TRANSITIONS IN CONFLICT

Two transitions are in conflict if there is some 
common state that would be exited if any one of them 
were to be fired [3]. In distinction from FSM and Petri nets 
statecharts conflicting transitions can be grouped into three 
categories: 
� horizontal, 
� vertical, 
� mixed. 

Fig. 2. Conflicts: a) diagram, b) hierarchy tree

The first case takes place when the transitions in 
conflict are on the same level of hierarchy tree. In Fig. 2 
horizontally conflicting transitions are t2 and t3 and the 
common state is s3. The second case holds when 
conflicting transitions are located on different levels of 
hierarchy tree. In Fig. 2 vertically conflicting transitions 
are transitions t1 and t2 and also t1 and t3, whereas the 
common state is again s3. The case of transition t1, t2 and t3
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from Fig. 2 at the same time combines features 
horizontally and vertically conflicting transitions, so the 
conflict of those three is of mixed type at once. 

For statechart-based controller to work correctly 
transitions being in potential conflicts must have 
predicates pair wise orthogonal (in the context of global 
state) [4], i.e. potentially conflicting transitions form 
compatibility classes, where compatibility means 
orthogonality relation, e.g. T3={t1,t2,t3}. The name of the 
set is T3 because potentially conflicting transitions come 
from the states which on hierarchy tree (Fig. 2b) belong to 
the path leading from the root to the leaf state s3. For 
example for the diagram from Fig. 2 predicates imposed 
on transitions could be as follows: t1=a*!b*!c, t2=b*!a*!c, 
t3=c*!a*!b. Then pair wise orthogonalities are as follows: 

t1*t2=a*!b*!c*b*!a*!c=0, 
t1*t3=a*!b*!c*c*!a*!b=0, 
t2*t3=b*!a*!c*c*!a*!b=0 

and hence the diagram is conflict-free. 
Orthogonality of transition predicates is a necessary 

condition (but not sufficient) which must be met for a 
controller working correctly. 

2. EXAMPLE

The chemical reactor is an example of industry 
technological process, in which reacting substances of two 
kinds are strictly measured out and next are mixed in water 
environment (Fig. 3) [1]. The process consists of three 
stages: 
� water preparing and substrates weighting of given 

mass – state FILLING, 
� ingredient stirring in main container for given period 

of time – state PROCESS, 
� preliminary process preparing; this stage involves 

removing discards from scales and from main 
container – state INITIATING. 

Fig. 3. Schematic diagram 

The operator, who supervises course of process, has 
at his disposal a control desk which is capable of: break-
down signalling (AU signal), init process requesting (REP

signal), process starting (AUT signal). As it is can be seen 
in the Fig. 3, the operator is allowed to signal break-down 
in course of filling of containers and in course of chemical 
process execution. Incoming signals to the controller are 
signals from weight and level sensors (B1, B2, NLIM, 
Nmax, Nmin) deployed in chemical installation and signals 
from external clocks, which are assigned to measure given 
time intervals. Outgoing signals from controller are setting 
signals for pump valves, belt conveyors, mixer engine and 
for clocks (V1, V2, V3, V4, V5, V6, EV, C1, AC1, C2, AC2, 
M., TM1, TM2). Fig. 4 presents reactor block diagram. 

Fig. 4. Context of the controller 

Functioning of a chemical plant is as follows (Fig. 5). 
System start from state START and next in case of lack of 
break-down signal moves into state INITIATING, where 
main container and belt conveyors are cleared out of 
previous cycle process remainders. Next, with signal AUT, 
preparing of process ingredient is started – state FILLING. 
In this state, break-down notification (signal AU) makes 
that state RESTART becomes active and after the failure 
is repaired active state of superstate FILLING become 
most recently active ones. Behaviour of this kind is 
achieved with the use of history attribute. After all the 
containers (main container and scale containers) are 
properly filled main chemical process is being started, 
where reaction time (state REACTION) is measured by 
external clocks. Start of an ensuing process is triggered 
after signal AUT is introduced from control desk, under 
that condition, that main container is emptied to the 
desired level (Nmin signal). Then system moves to the 
filling STATE. 

Fig. 5. Statechart of the controller 

The diagram in Fig. 5 features nondeterminism, it 
means that transitions depicted there are potentially in 
conflict. The sets of transitions potentially in conflict are: 

T8={t5,t6,t7,t8}, T9={t5,t6,t9},
T10={t5,t6,t10}, 

T11={t5,t6,t11}, T12={t5,t6,t12},
T13={t5,t6,t13}, 

T14={t5,t6,t14}, T17={t16,t17,t18,t19}. 
To solve conflicts orthogonal predicates can be used, 

but because of the diagram legibility, predicates imposed 
on transition consist of only these signals which are 
essential for proper understanding working of the reactor. 
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3. INCONSISTENCIES IN CONTROL SYSTEM

Binary controller and controlled object interact in 
control system. Current state of the controller must 
correspond to the state of the controlled object.  

Let us take a closer look at compound state FILLING 
(Fig. 5) and let us simplify original diagram. Fig. 6 
presents one of many possible sets of orthogonal transition 
predicates. Are the three processes (A, B, C which 
correspond to MainContainer, Scale1 and Scale2, 
respectively), that should be concurrent, really 
independent one of another? Can the transitions in these 
three concurrent regions fire freely and can states active 
independently one of another? Surprisingly, it turns out 
that they cannot. 

Fig. 6. Simplified diagram 

For example, state A3 and B2 will never be active 
together. Simultaneous activity of these states could 
supposedly be reached in three case: 

a) states A1 and B1 are simultaneously active and 
transitions t1 and t5 are firing simultaneously – this 
cannot happen, because of orthogonal predicates 
(events b and a3) imposed on t1 and t5,

b) states A1 and B2 are active and transitions t1 fires – 
then predicate imposed on c (a3*!a2*!b*!c*!r) is 
met and it makes that predicate imposed on t6 is 
also met (!b*!r), so t6 fires and activity from B2 is 
removed; as a result active states are A3 and B1, 

c) states A3 and B1 are active and transition t5 fires – 
then predicate imposed on t5 (b*!a3*!r) is met and 
it makes that predicates imposed on t3 is also met 
(!a3*!r), so t3 fires and activity from B3 is 
removed; as a result active states are A1 and B2. 

In cases b) and c) it is as if activities in concurrent regions 
A and B pass each other. Similar considerations can be 
apply to regions A and C.  

Changes in a controller are not a results of respective 
changes in controlled object. They appear as an 
unintentional effects and lead to inconsistencies in the 
control system. What these inconsistencies means to the 
chemical reactor control system? The case a) means only 
that in controller main container and scales will never be 
full simultaneously, that is of no great significance for this 
system but is absurdity. In the case b) in the controlled 
object both main container and scale 1 are full, but 
controller is in local states StopM (A3) and SC1Fill (B1) – 
what is contradictory. The case c) corresponds to situation 
when, in the object, scale 1 and main container are full 
again, but controller is in states Stop1 (B2) and MCFill

(A1) – what is contradictory again. 
A question arises what makes that under conditions  

of orthogonal predicates a control system is inconsistent? 
The answer is that predicate transitions in concurrent 
regions must not be in implication relation, i.e. firing 

transition in one region could never entail firing transition 
in other region. In case of an investigated example (Fig. 6) 
this undesired relation takes place between transitions: t1

and t6, t5 and t3, t1 and t8, t7 and t3. This stems from the fact 
that predicate of one transition is an implicant of predicate 
of other transition, e.g.: t1�t6 means: 

a3*!a2*!b*!c*!r � !b*!r

In this particular chemical reactor control system 
occurring inconsistencies do not have serious 
consequences for the controlled object, but in case of live- 
or safety-critical system this can be heavily dangerous. 

4. ASSURANCE OF CONSISTENCY 

The problem is how to avoid in control system 
inconsistencies brought about by orthogonal transitions. 
The answer is that for every pair of transition located in 
two different concurrent regions their predicates must not 
implicate one another. To say it in other way: for two 
predicates of transitions t1 and t2 following two formulas 
must be satisfiable: !(t1�t2) and !(t2�t1). To put it 
formally: 

M
� M╞═ !(t1�t2) and 

M
� M╞═ !(t2�t1), 

where M is an interpretation satisfying formulas (model). 
This is sufficient condition (non-implication) related to 
transition predicates which must be met for a controller to 
work correctly. For the diagram from Fig. 6 examples of 
pair non-implicable transitions are: {t1,t5}, {t1,t6}, {t1,t7}. 

Assurance of consistency comes down to fulfillment 
of two conditions: orthogonality (necessary) and non-
implicability (sufficient). This can be achieved by 
appropriate selection of predicate formulas. However, the 
task is computationally complex and rather unfeasible for 
the human, especially in case of complex diagrams, 
therefore, it is necessary to use some syntactical graphic 
structures. Compound concurrent transition and special 
variables feature of great clarity and can be applied. 

4.1. CONCURRENT TRANSITION

Concurrent transition may have many input states. It 
represents a synchronization of concurrent threads [6]. The 
transition is enabled when all the source states are active 
and also may have imposed predicates. Graphically 
concurrent transition is a heavy bar with many arrows 
coming from source states. 

Fig. 7. Synchronization with concurrent transition 

Fig. 7 presents improved diagram from Fig. 6 and 
Fig. 8 presents improved reactor controller. Implicitly is 
assumed that concurrent transition has higher priority over 
hierarchy lower level transitions (t3, t6, t8). If it is necessary 
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priority can be changed by changing predicate, e.g. 
transition t11 predicate could be a3*b*c*!r. 

Fig. 8. Statechart diagram 

4.2. SYNCHRONIZATION VARIABLES

Synchronization variable is normal variable declared 
locally, but used in special way. When activity has to leave 
state F (Fig. 9, transition t11) during states A3, B2 and C2

are active, variables can be associated with the states 
(action do) and form predicate imposed on transition t11

(x*y*z). For the transitions t3, t6 and t8 to resolve conflicts 
with t11 their respective predicates must take into account 
activities of the states A3, B2 and C2. This is done by 
presence of the proper synchronization variables (e.g. for 
t3 the condition is !(y*z)). It is worth noting that 
synchronization local variable, unlike input variable, can 
only be changed by activities of the diagram (e.g. states or 
transitions) and not by event coming from outside world.  

Fig. 9. Synchronization with variables 

5. SUMMARY

The first necessary condition concerning transitions 
is orthogonality. Predicates imposed on transitions must be 
orthogonal. But this is not sufficient condition for 
correctly working controller. The only orthogonal 
transitions can make bring about inconsitencies in control 
system. The state of the controller does not conform the 
state of controlled object. Their transition predicates must 
meet second sufficient condition – non-implication. 
Predicates pair wise must not implicate each other. Both 
conditions can be met by appropriate construction of 
predicates what is very complex. Therefore statechart 

graphic structures: concurrent transition and special 
variable can be applied. It is worth to note that 
introduction synchronization with variable (Fig. 10) 
reduced the number of global sates from 162 to 41. 

Figs. 8 and 10 present improved diagram of reactor 
controller. Predicates presented in the diagrams are 
incomplete, they include only signals which are essential 
for grasp of controller working by the designer. Complete 
predicates would have obscured the diagrams and their full 
version can be obtained by analogy to Figs. 7 and 9. 

Fig. 10. Statechart diagram  
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