
262 __ KNWS 2010

Transition orthogonality in statechart diagrams

and inconsistencies in binary control system

Grzegorz Łabiak

Abstract: The paper concerns the problem of some
inconsistencies between controller and controlled object in
control system. These inconsistencies are a results of
incorrectly built predicates where state of the controller
does not conforms state of the object. In the paper two
solutions removing this flaw has been presented: with
concurrent transition and with local variables.

Key words: statechart diagrams, transition conflict,
transition orthogonality, binary control system

1. INTRODUCTION

1.1. DIGITAL CONTROLLER DESIGN

The first step in digital binary controller design is
formal specification of controller behavior [1]. Behavior of
the controller can be specified as a Finite State Machine –
for simple behavior, as a Petri nets – which because of
using of concurrency explicitly is much more efficient in
complex behavior description or as a statechart diagrams
which traditional FSM enhance with concurrency,
hierarchy and broadcast mechanism [1][2][6]. It seems that
statechart diagrams in comparison with Petri nets features
greater expressive power, especially when exception
modeling is concerned [3][4]. Next, formally modeled
behavior can by implemented in programmable devices
(e.g. FPGA or CPLD) [1]. Every behavior specification
formalism features transitions which in case of
deterministic behavior transform activity to the next only
one sequential state (place). The determinism of such
models is assured by transition orthogonality (transitions
are conflict-free), but, in case of statechart it turns out that
transition orthogonality is not enough condition.

The paper presents case study where despite the fact
that transition are conflict-free the control system can
develop wrong behavior. This problem can be solved by
introduction concurrent transitions crossing state border,
or, in case of statechart modular semantic where
transitions must not cross state border, by introduction
additional variables. Both solutions are described in the
paper.

1.1. BINARY CONTROL SYSTEM

Binary control system is a system where a controller
which operates on binary values on its input and output
interacts with controlled object (Fig. 1) [5]. Some signals
can come to the controller from outside operator and some
other signals can be visible to the outside world. The
controller prompts controlled object and the controlled

object responds with its state signal to the controller and so
on. The controller is a reactive system that continuously
have to changes its actions in response to stimuli. In this
system both controller and controlled object must have
synchronized its internal states or in other words the
system as a whole must be consistent. This means that the
controller forces changes in the object and the controller
updates its internal states in responses to changes in the
controlled object.

Fig. 1. Binary control system

1.2. TRANSITIONS IN CONFLICT

Two transitions are in conflict if there is some
common state that would be exited if any one of them
were to be fired [3]. In distinction from FSM and Petri nets
statecharts conflicting transitions can be grouped into three
categories:
� horizontal,
� vertical,
� mixed.

Fig. 2. Conflicts: a) diagram, b) hierarchy tree

The first case takes place when the transitions in
conflict are on the same level of hierarchy tree. In Fig. 2
horizontally conflicting transitions are t2 and t3 and the
common state is s3. The second case holds when
conflicting transitions are located on different levels of
hierarchy tree. In Fig. 2 vertically conflicting transitions
are transitions t1 and t2 and also t1 and t3, whereas the
common state is again s3. The case of transition t1, t2 and t3

KNWS 2010 __ 263

from Fig. 2 at the same time combines features
horizontally and vertically conflicting transitions, so the
conflict of those three is of mixed type at once.

For statechart-based controller to work correctly
transitions being in potential conflicts must have
predicates pair wise orthogonal (in the context of global
state) [4], i.e. potentially conflicting transitions form
compatibility classes, where compatibility means
orthogonality relation, e.g. T3={t1,t2,t3}. The name of the
set is T3 because potentially conflicting transitions come
from the states which on hierarchy tree (Fig. 2b) belong to
the path leading from the root to the leaf state s3. For
example for the diagram from Fig. 2 predicates imposed
on transitions could be as follows: t1=a*!b*!c, t2=b*!a*!c,
t3=c*!a*!b. Then pair wise orthogonalities are as follows:

t1*t2=a*!b*!c*b*!a*!c=0,
t1*t3=a*!b*!c*c*!a*!b=0,
t2*t3=b*!a*!c*c*!a*!b=0

and hence the diagram is conflict-free.
Orthogonality of transition predicates is a necessary

condition (but not sufficient) which must be met for a
controller working correctly.

2. EXAMPLE

The chemical reactor is an example of industry
technological process, in which reacting substances of two
kinds are strictly measured out and next are mixed in water
environment (Fig. 3) [1]. The process consists of three
stages:
� water preparing and substrates weighting of given

mass – state FILLING,
� ingredient stirring in main container for given period

of time – state PROCESS,
� preliminary process preparing; this stage involves

removing discards from scales and from main
container – state INITIATING.

Fig. 3. Schematic diagram

The operator, who supervises course of process, has
at his disposal a control desk which is capable of: break-
down signalling (AU signal), init process requesting (REP

signal), process starting (AUT signal). As it is can be seen
in the Fig. 3, the operator is allowed to signal break-down
in course of filling of containers and in course of chemical
process execution. Incoming signals to the controller are
signals from weight and level sensors (B1, B2, NLIM,
Nmax, Nmin) deployed in chemical installation and signals
from external clocks, which are assigned to measure given
time intervals. Outgoing signals from controller are setting
signals for pump valves, belt conveyors, mixer engine and
for clocks (V1, V2, V3, V4, V5, V6, EV, C1, AC1, C2, AC2,
M., TM1, TM2). Fig. 4 presents reactor block diagram.

Fig. 4. Context of the controller

Functioning of a chemical plant is as follows (Fig. 5).
System start from state START and next in case of lack of
break-down signal moves into state INITIATING, where
main container and belt conveyors are cleared out of
previous cycle process remainders. Next, with signal AUT,
preparing of process ingredient is started – state FILLING.
In this state, break-down notification (signal AU) makes
that state RESTART becomes active and after the failure
is repaired active state of superstate FILLING become
most recently active ones. Behaviour of this kind is
achieved with the use of history attribute. After all the
containers (main container and scale containers) are
properly filled main chemical process is being started,
where reaction time (state REACTION) is measured by
external clocks. Start of an ensuing process is triggered
after signal AUT is introduced from control desk, under
that condition, that main container is emptied to the
desired level (Nmin signal). Then system moves to the
filling STATE.

Fig. 5. Statechart of the controller

The diagram in Fig. 5 features nondeterminism, it
means that transitions depicted there are potentially in
conflict. The sets of transitions potentially in conflict are:

T8={t5,t6,t7,t8}, T9={t5,t6,t9},
T10={t5,t6,t10},

T11={t5,t6,t11}, T12={t5,t6,t12},
T13={t5,t6,t13},

T14={t5,t6,t14}, T17={t16,t17,t18,t19}.
To solve conflicts orthogonal predicates can be used,

but because of the diagram legibility, predicates imposed
on transition consist of only these signals which are
essential for proper understanding working of the reactor.

264 __ KNWS 2010

3. INCONSISTENCIES IN CONTROL SYSTEM

Binary controller and controlled object interact in
control system. Current state of the controller must
correspond to the state of the controlled object.

Let us take a closer look at compound state FILLING
(Fig. 5) and let us simplify original diagram. Fig. 6
presents one of many possible sets of orthogonal transition
predicates. Are the three processes (A, B, C which
correspond to MainContainer, Scale1 and Scale2,
respectively), that should be concurrent, really
independent one of another? Can the transitions in these
three concurrent regions fire freely and can states active
independently one of another? Surprisingly, it turns out
that they cannot.

Fig. 6. Simplified diagram

For example, state A3 and B2 will never be active
together. Simultaneous activity of these states could
supposedly be reached in three case:

a) states A1 and B1 are simultaneously active and
transitions t1 and t5 are firing simultaneously – this
cannot happen, because of orthogonal predicates
(events b and a3) imposed on t1 and t5,

b) states A1 and B2 are active and transitions t1 fires –
then predicate imposed on c (a3*!a2*!b*!c*!r) is
met and it makes that predicate imposed on t6 is
also met (!b*!r), so t6 fires and activity from B2 is
removed; as a result active states are A3 and B1,

c) states A3 and B1 are active and transition t5 fires –
then predicate imposed on t5 (b*!a3*!r) is met and
it makes that predicates imposed on t3 is also met
(!a3*!r), so t3 fires and activity from B3 is
removed; as a result active states are A1 and B2.

In cases b) and c) it is as if activities in concurrent regions
A and B pass each other. Similar considerations can be
apply to regions A and C.

Changes in a controller are not a results of respective
changes in controlled object. They appear as an
unintentional effects and lead to inconsistencies in the
control system. What these inconsistencies means to the
chemical reactor control system? The case a) means only
that in controller main container and scales will never be
full simultaneously, that is of no great significance for this
system but is absurdity. In the case b) in the controlled
object both main container and scale 1 are full, but
controller is in local states StopM (A3) and SC1Fill (B1) –
what is contradictory. The case c) corresponds to situation
when, in the object, scale 1 and main container are full
again, but controller is in states Stop1 (B2) and MCFill

(A1) – what is contradictory again.
A question arises what makes that under conditions

of orthogonal predicates a control system is inconsistent?
The answer is that predicate transitions in concurrent
regions must not be in implication relation, i.e. firing

transition in one region could never entail firing transition
in other region. In case of an investigated example (Fig. 6)
this undesired relation takes place between transitions: t1

and t6, t5 and t3, t1 and t8, t7 and t3. This stems from the fact
that predicate of one transition is an implicant of predicate
of other transition, e.g.: t1�t6 means:

a3*!a2*!b*!c*!r � !b*!r

In this particular chemical reactor control system
occurring inconsistencies do not have serious
consequences for the controlled object, but in case of live-
or safety-critical system this can be heavily dangerous.

4. ASSURANCE OF CONSISTENCY

The problem is how to avoid in control system
inconsistencies brought about by orthogonal transitions.
The answer is that for every pair of transition located in
two different concurrent regions their predicates must not
implicate one another. To say it in other way: for two
predicates of transitions t1 and t2 following two formulas
must be satisfiable: !(t1�t2) and !(t2�t1). To put it
formally:

M
� M╞═ !(t1�t2) and

M
� M╞═ !(t2�t1),

where M is an interpretation satisfying formulas (model).
This is sufficient condition (non-implication) related to
transition predicates which must be met for a controller to
work correctly. For the diagram from Fig. 6 examples of
pair non-implicable transitions are: {t1,t5}, {t1,t6}, {t1,t7}.

Assurance of consistency comes down to fulfillment
of two conditions: orthogonality (necessary) and non-
implicability (sufficient). This can be achieved by
appropriate selection of predicate formulas. However, the
task is computationally complex and rather unfeasible for
the human, especially in case of complex diagrams,
therefore, it is necessary to use some syntactical graphic
structures. Compound concurrent transition and special
variables feature of great clarity and can be applied.

4.1. CONCURRENT TRANSITION

Concurrent transition may have many input states. It
represents a synchronization of concurrent threads [6]. The
transition is enabled when all the source states are active
and also may have imposed predicates. Graphically
concurrent transition is a heavy bar with many arrows
coming from source states.

Fig. 7. Synchronization with concurrent transition

Fig. 7 presents improved diagram from Fig. 6 and
Fig. 8 presents improved reactor controller. Implicitly is
assumed that concurrent transition has higher priority over
hierarchy lower level transitions (t3, t6, t8). If it is necessary

KNWS 2010 __ 265

priority can be changed by changing predicate, e.g.
transition t11 predicate could be a3*b*c*!r.

Fig. 8. Statechart diagram

4.2. SYNCHRONIZATION VARIABLES

Synchronization variable is normal variable declared
locally, but used in special way. When activity has to leave
state F (Fig. 9, transition t11) during states A3, B2 and C2

are active, variables can be associated with the states
(action do) and form predicate imposed on transition t11

(x*y*z). For the transitions t3, t6 and t8 to resolve conflicts
with t11 their respective predicates must take into account
activities of the states A3, B2 and C2. This is done by
presence of the proper synchronization variables (e.g. for
t3 the condition is !(y*z)). It is worth noting that
synchronization local variable, unlike input variable, can
only be changed by activities of the diagram (e.g. states or
transitions) and not by event coming from outside world.

Fig. 9. Synchronization with variables

5. SUMMARY

The first necessary condition concerning transitions
is orthogonality. Predicates imposed on transitions must be
orthogonal. But this is not sufficient condition for
correctly working controller. The only orthogonal
transitions can make bring about inconsitencies in control
system. The state of the controller does not conform the
state of controlled object. Their transition predicates must
meet second sufficient condition – non-implication.
Predicates pair wise must not implicate each other. Both
conditions can be met by appropriate construction of
predicates what is very complex. Therefore statechart

graphic structures: concurrent transition and special
variable can be applied. It is worth to note that
introduction synchronization with variable (Fig. 10)
reduced the number of global sates from 162 to 41.

Figs. 8 and 10 present improved diagram of reactor
controller. Predicates presented in the diagrams are
incomplete, they include only signals which are essential
for grasp of controller working by the designer. Complete
predicates would have obscured the diagrams and their full
version can be obtained by analogy to Figs. 7 and 9.

Fig. 10. Statechart diagram

LITERATURA

[1] Design of Embedded Control Systems, ed.ed. M. A.
Adamski, Karatkevich A., and Węgrzyn M., Springer
2005

[2] Harel D., Statecharts: A Visual Formalism for

Complex Systems, Science of Computer
Programming 8, pp. 231–274

[3] Harel, D. and Naamad A.. The STATEMATE

Semantics of Statecharts. ACM Trans. Soft. Eng.
Method, 1996

[4] Łabiak G. Transition conflicts detection in binary

modular statecharts diagrams, Proc. of IFAC
workshop – PDS’04, Poland 2004, pp. 192-197

[5] Misiurewicz P., Układy automatyki cyfrowej, WSiP,
Warszawa 1987.

[6] UML, Unified Modeling Language Specification.
Version 1.4.2, ISO/IEC 19501, 2005

dr inż. Grzegorz Łabiak

University of Zielona Góra
Faculty of Electronic Engineering,
Computer Science and
Telecommunications
Computer Engineering. & Electronics
Department
ul. prof. Z. Szafrana 2
65-246 Zielona Góra
tel.: 68 328 26 16

mail: G.Labiak@iie.uz.zgora.pl

