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Stability of time-varying linear system

Aneta Szyda

Abstract: In this paper we consider sufficient conditions
for the exponential stability of linear time-varying systems
with continuous and discrete time. Stability guaranteeing
upper bounds for different measures of parameter
variations are derived.

Keywords: time-varying linear systems, exponential
stability, stability of linear systems, asymptotic stability,
Lapunov exponent. .

Streszczenie: W artykule rozwazane sa warunki
wystarczajace na eksponencjalna stabilnos¢ dla zmiennych
w czasie uktadow liniowych zaréwno ciaglych jak i
dyskretnych. Prezentowane sa rézne miary zapewniajace
stabilno$¢ oraz wyprowadzone zostato gorne ograniczenie
na zmienno$¢ parametréw zapewniajace stabilnosc.
(Stabilno$¢ zmiennych w czasie ukladow liniowych)

Stowa kluczowe: zmienne w czasie uklady liniowe,
eksponencjalna stabilnos¢, stabilno$¢ ukladéw liniowych,
stabilno$¢ asymptotyczna, wyktadnik Lapunowa.

1. INTRODUCTION

Stability and stability conditions are one of the most
important problem in a system projecting process.
Ensuring the stability for systems is a main issue that
decides the correct action. During the construction,
subsequent tests and simulations, it is necessary to check
whether the test object is stable and/or we need to define
the settings for which this system is stable. In determining
stability, useful and quick to assess are the stability
conditions. For stationary systems stability conditions are
well known. There are many methods described in the
literature for such systems that determine conditions for
the system stability. For complex or nonstationary systems
where state depends on switching signal the stability
conditions are not so obvious and problem of ensuring
stability or determining whether the system is stable or
not, is not an easy and trivial task.

In this paper we study problems concerning
exponential stability of linear time-varying system of the
form:

%(t) = AD)x(t),t > 0 (1)
and
x(k +1) = A(k)x(k),n >0 )

If the function 4(¢) in (1) is piecewise constant then system
(1) is called switched linear system. If all of the matrices
A(t) are Hurwitz, then it is possible to ensure the stability
of the associated switched system by switching
sufficiently slowly between the asymptotically stable

constituent appropriate time invariant systems. This means
that instability arises in (1) as a result of rapid switching
between these vector fields. Given this basic fact, a natural
and obvious method to ensure the stability of (1) is to
somehow constrain the rate at which switching takes
place. The basic idea of constraining the switching rate has
appeared in many studies on time varying systems over the
past number of decades [6, 8, 13]. One of the best known
and most informative of these studies was given by
Charles Desoer in 1969 in his study of slowly varying
systems [4]. The basic problem considered by Desoer was
to find conditions on the switching rate that would ensure
the stability of an unforced system of the form (1), where
A(?) is a matrix valued continuous function such that for

some >0 the condition Rea (A(t))<—a is satisfied.
There are two key points to emphasize here; firstly, the
stability of the time-varying system can be ensured by
suitably constraining the rate of variation of A(¢), and
secondly the constraint on derivative of A(¢) is determined
by a Lyapunov function associated with the system.

It is well-known that if, for each 20 (k>0) all
eigenvalues of A(?), (A(k)) are lying in the proper open left
half complex plane (in open unite circle), then the system
(1), ((2)) is not necessarily exponentially stable (see e.g.
12). Exponential stability is secured if, additionally, the
parameter variation of, A(?), (4A(k)) is "slow enough", see
[2, 11]. However, these are qualitative results. In [8]
quantitative results are derived for continuous time. This
means, upper bounds for the eigenvalues and for the rate
of change of A(f) which ensure exponentials stability of (1)
are determined. Results of this kind are presented in
Section 2. It seems that similar results for discrete time are
unknown. In this paper we present such results.

In Section 2. previous achievements and deriver
stability conditions in continuous time systems are
presented, important theorem was in new, differently way
proved, there are also examples of continuous time
systems shown. In Section 3. similar conditions for
discrete time systems are derived and illustrated with
numerical example in Section 4. Section 5. includes
conclusion.

2. CONTINUOUS TIME SYSTEM

Consider the homogeneous
differential equation (1), with 4(t) € PC(R,,R™")  where

linear time-varying

PC(R,,R™) denotes the set of piecewise continuous
real n by n matrix functions on R. = [0, 00). Let <':'> be

the usual inner product on R", "’” the associated norm
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and "B" induced operator norm for any linear operator
BeL(R",R") . Denote by (2,5 the transition matrix of

(1) and by X (¢)=®(1.0) fundamental matrix. We will
assume that A(¢) is bounded i.e there is a constant M such
that

40| <M foran t20. 3)

Definition 1 The system (1) is said to be exponentially
stable if there exist C>@ >0 such that

||<D(t,sl| <Ce™™) forall t2520 (4)
It appears that exponential stability can be characterized in
terms of Bohl exponents.
Definition 2 The Bohl exponent B(A) of the system (1) is
given by

limsup —ln"(tb(t’s)" ) %)
-8

§,f—S—0

pA)=

It can be shown [3] that for the Bohl exponent we have the
following formula

B4) =
—infl-@:3M, >0vi> 550 [Df,s)<M,e ] (6

Moreover the Bohl exponent is upper semi-continuous
what is crucial in most perturbation questions and system

(1) is exponentially stable if and only if B(4)<0

If A(¢) is a constant matrix it is well-known that (1) is
exponentially stable iff the real parts of the eigenvalues of
A are lying in the open left half plane. For time-varying
systems, even if they are analytic and periodic, exponential
stability does neither imply

Re O'(A(t))c c (7)
nor does for some ¢>0 the condition
Reo(A(t))< —a forallt >0 ®)

guarantee exponential stability.

Example 1 Let [7]
—sint ||—1 —5| cost sint
cost | O —1|—sint cost|’ ©)

cost

A1) =[ .
sint

Then o(A4(t)={-1} forallz>0 and it can be easily

verified that a fundamental matrix is given by

t( 1 . j _St[ 1 . j
e'| cost+—sint | e | cost ——sint
2 2

1 1. |49
e'| cost——sint | e™| cost+—sint
2 2

Thus (1) is not exponentially stable.
Example 2 Let [12]

X(t)=

—1—21+—5 nl2¢t %colet
A@t) = 15 . (1)
—-cos12¢ ————sinl2¢
2 2

Then 0(4(t)=1{2,-13} forallt>0 4n4 it can be easily
verified that a fundamental matrix is given by

(12)
where

a, = %e” (cos 61 +3sin 6t)+%e’1°’ (cos 61 —3sin 6¢)

a, = ée" (cos 61+ 3sin 6t)—ée'1°’ (cos 61 —3sin 6¢)

aZIZ%e_’ (3 cos 61 —sin 61)——e ' (3 cos 6¢ +sin 6¢)

ay :%e" (3 cos 61 —sin 6¢)+—e ' (3 cos 61 +sin 6¢)

and consequently (1) is exponentially stable.

The system presented in Example 1 is in some sense
"too fast" in order that condition Reo (A(t ))S =1 for all
120 implies exponential stability. Various assumptions
on the parameter variation of A(f) are known, such that if
6>0 s sufficiently small then anyone of the following
conditions guarantees exponential stability of (1):

HA(t)”SﬁforalltZO [11] (13)
||A(t2)—A t m < 5|t —t |forall 1,1, 20 7] (14)
sup"A t+r )||<5 (15)

As a consequence of the following Theorem 1, (15)
implies exponentials stability if 0 is small enough. (15) is
less restrictive than a similar condition in [9], Lemma 3:

lim sup ||A t+7)-4 (t]| =0forall2>0

1% gcr<py (16)

The disadvantage of (13) - (15) is that they are qualitative
conditions in the sense that & must be small enough. We
can improve the results and give quantitative bounds.

Theorem 1 Suppose A(?) € PC(R,,R™ satisfies for
some @M >0 andall 120

[4@] <M (17)
U(A(t))c {s eC:Res< —a},

Then the system (1) is exponentially stable if one of the

following conditions holds true for all =0

(i) —a <—4m
(i)  A() is piecewise  differentiable  and
4n-2
a
o <o« st
Proof: We will use the following important inequality due
to [2]:
2M
At)o (—a+£)o
o] <(24) a8)
for all ©>¢20 and for all & € (0,2M).
For fixed 20 (1) can be rewritten in the form
(1) = At (@) + (A(0) = A(t,) Jx(0) (19)

and for ¥(%y) =X, its solution is given by

X(t) = eA(tO)(t—to)xo " JeA(to)U-S) (A(s) — A(¢, ))ds (20)

to
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Hence by (18)

n-1
2M
forall {214 where k, =(—] )

Gronwall's Lemna yields

41
- v 1Y
)] < ke K, |+ ||R(t)|| < 2(7] (—2(_ o g)] 4 (32)
+ ksje(’“*f)(”) A(s) = A(ty)||x(s)||ds @) and thus (31) holds if for some ¢ € (0,2)
f 4(n-1)
5< 2(&] (a-e) (33)
€ Define a function g: (O’ a)> R , by
Multiplying this inequality by e " and applying & o ,
gla)= Z[EJ (06 —& ) . It is easily verified, that g(.)

e(”’s)tx(t)" <

x0|| exp{kg.tf

)

S kge(aﬁf: )to

|A<s>—A(to>||||x<s>||ds1. (22)

Thus
)] <

t

x0|| exp[kg_[

)

<k e(—aﬂ:)(z—to)

&

46— At >||||x<s>||ds] )

Now we prove the statements (i ) and (ii).
G): Since [A()=AC|<2M  for all 84,20 (23)
implies for € € (0,2M ) and some /#>0:
[x(®)]| <k, expl(-a + &+ 2k, M Nt -1, )] x(t, )| <
<k, expl(e +2k,M —4M — )t —t,)]x(t,)| .

The function S (O,ZM ]—> R defined as
fle)=e+2k,M -M—h s continuous and A2M)=-h.

Thus there exists € € (O,2M ] such that ./ (5 ) <0,
(i1): Consider

(24)

©

R(t) = IeAT(t)seA(t)sds (25)
0
which solves Lyapunov equation
R(OA@W)+ A" (OR(t)=—1 (26)
and satisfies for some €1, >0
ol <R(t)<c,! (27)
The derivative of R() is given by
k@)= [e" O [R@OA0 + AT OROE P ds (28
0
Now we show that
V(x,0) = (R(6)x(1),x(1)) (29)

is a Lyapunov function of (1). Its time derivative along
any solution is

%V(xm,r) —{(- I+ RO (1)

We have to show that

(30)

R(t)<1 (31)

for all 20 Applying Coppel's inequality (18) to (28) and
(25) yields

n
achieves its minimum on (O,a) at & =——a | This
n

+1
verifies (33) and ends the proof.

3. DISCRETE TIME SYSTEM

For system (2) we define
O(t,t)=1and
Dt,5)= At =D A@=2).. A(s) fort >st,5€ N (34)

We will consider system (2) under the assumptions that
there exists a constant M>0 such that

"A(k)” <M forall keN

We have the following definition.
Definition 3 The system (2) is said to be exponentially

stable if there exist C,@ >0 @ <1 gych that

"(D(t,sm < CC{)(F‘Y) forall t >5>0 A

(35)

(36)
It appears that exponential stability can be characterized in
terms of Bohl exponents.

Definition 4 The Bohl exponent B(A) of the system (2) is
given by

B(A) =limsup||®(z, s)| = . 37)

§,t—s—0

Moreover for the Bohl exponent we have several

alternative formulas (see [10])
B(A) = lim(sup"(b(t +s, s)||1] - inf(sup"(b(t +s, s)"i] -
1290 seN 1eN seN

_inflrIM, > 0vi> >0 |ols) <M, ) (38)
and system (2) is exponentially stable if and only if
pA) <1

For discrete time-varying systems similarly as for
continuous, exponential stability does neither imply

plA() <1 forall 1€ N
nor does the condition

p(A(t) <1 foratl teN
guarantee exponential stability.
O(A) =sup p(A(t

(4) =50 p(AD) 11 15,

has been proved.

(39)
(40)
Denote

the following theorem

Theorem 2 For each bounded sequence (A(t))tEN of
matrices there exists a constant C>0 such that for any

£>0 we have
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|44 @] < clo(a)+2) | (41)

In the proof of the main result of this section we will use
the following discrete version of Gronwall's inequality [1].
Theorem 3 Suppose that for two sequences (u(k))keN
and (f (k))keN of real numbers the following inequality

k-l
u(k) < p+q) u@)f(i) (42)
i=0
holds for certain 229 € R andall ke N , then
k-1
u(k) < p[ (1+4q/ () (43)
i=0
forall KEN
For fixed ko 20 (2) can be rewritten in the form
x(k +1) = Ak )x (k) + (A(k) = Alky Dx(k) — (44)

and for x(ko ) =X its solution is given by

x(k) = A" (kg ), + 3 A (k, XA~ Ak, x(D) (45
1=k,
Hence by (41)
[x(k)| < C(5(4)+) ™
k=1
+ 2. C(8(A) +&) ™ |(a(r)- Alk, )l

I=k,

x|+
(46)
Multiplying this inequality by C(3(4)+&)" yields
C(8(A) + &) |xh)| < C(5(A) + &) x| +
+(5(+e) Z C(o(a)+ &) (4@) - Al NIx D] 47y

Applying Gronwall's inequality and taking into account
that "A(k) — A(k, )" <M e obtain

[ oz)

|| 1+———1 =
p(A)+e¢

= C(5(A) +&) ™| [(p(4) + &+ 20 )"

()| < C(5(4)+£) "

(48)
We have proved the following theorem.

Theorem 4 If P(A)+2M <1 then system (2) is
exponentially stable.

4. NUMERICAL EXAMPLE

Consider system (2) with

k+18 l
_| 8k +80 4
Alk)= k+26 (49)
16k +160
It can be show that matrix has the form
1 1 1
8 k410 4
A(k): 1 1 , SO Wwe can write
0 —_—t—
16 k+10

1 1

A(k) =4 +m, where 4=|8 ‘1‘ and
0 —
16

|
Alk)=——T1 ;
T the rate of change of A(k).

o111
Then G(A(k))_{§+k+1o’ﬁ+k+1o

} thus spectral

radius is P(A(k)) and chosen matrix norm

= —
8 k+10

()| < % as a upper bounds.

For matrix A(k) the stability condition using Theorem 4 is
given by:

sup p(A(k))+ 2M <1
keN

. 50
1+L+2.l:§<1 ( )
8 10 4 80

The discrete time system where we switched between
defined matrices of the form A4(k) is exponentially stable
because the stability condition holds.

5. CONCLUSION

For stationary discrete and continuous systems in the
literature there are described the stability conditions. For
complex systems, where state depends on switching
signal, the stability conditions are not so obvious. We
consider stability conditions for slowly varying systems
where the parameter variation of A(¢), (A(k)) is "slow
enough". In this paper not only qualitative but also
quantitative stability conditions for such systems are
determined. Very important is that derived conditions use
only information about matrices. For check, if discrete
system is exponentially stable, we need only information
about eigenvalues, spectral radius and matrix norm.
Important is that, the derived stability condition for
discrete time system doesn’t depend on order of matrices.

REFERENCS

[1] Agarwal R.P., Difference equations and inequalities.
Theory, methods and applications. New York:
Marcel Dekker, 2000.

[2] Coppel W.A., ,Dichotomies in stability theory”,
Lect. Notes Math., 629, Springer-Verlag, Berlin et
al., 1978.

[3] Daleckii Ju.L., Krein M.G., ,,Stability of solutions of
differential equations in Banach spaces”, AMS,
Providence, Rhode Island, 1974.

[4] Desoer C.A., ,Slowly varying system x = a(t)x”,
IEEE Transactions on Automatic Control, vol.14,
1969, p. 780-781.

[5]1 Fuchs J.J., ,,On the good use of the spectral radius of
a matrix”, IEEE Transactions on Automatic Control,
vol.27, 1982, p.1134-1135.

[6] Guo D., Rugh W., , A stability result for linear
parameter-varying systems”, Systems and Control
Letters, vol.24, 1995, p. 1-5.



KNWS 2010

(7]

(8]

(9]

[10]

[11]

[12]

43

Hoppenstaed F.C., ,Singular perturbations on the
infinite interval”, Trans. Am. Math. Soc., vol.123,
1966, p.521-535.

Ilchmann A., Owens D.H., Pratzel-Wolters D.,
,wduficient conditions for stability of linear time-
varying systems”, Systems and Control Letters, vol.9,
1987, p.157-163.

Kreisselmeier G., ,,An approach to stable indirect
adaptive control”, Automatica, vol.21, 1985, p.425 —
431.

Przyluski K., ,Remarks on the stability of linear
infinite—dimensional discrete—time systems”, Journal
of Differential Equations, vol.72, 1988, p.189-200.
Rosenbrock H.H., ,,The stability of linear time—
dependent control systems”, Int. Journal Electr.
Control, vol.15, 1963, p.73 — 80.

Wu M.Y ., ,,A note on stability of linear time-varying
systems”, IEEE Trans. Autom. Control, vol.19, 162,
1974.

[13] Zheng J., ,,General lemmas for stability analysis of

linear continuous—time systems with slowly time-
varying parameters”, [International Journal of
Control, vol.58, 1993, p. 1437-1444.

mgr inz. Aneta Szyda
Politechnika Slaska
Wydziat  Automatyki,
i Informatyki

Instytut Automatyki

Elektroniki

ul. Akademicka 16
44-100 Gliwice

tel.: (032)-237 10 86
e-mail: aneta.bal@polsl.pl



